Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 11345, 2023 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-37443328

RESUMO

Species diversification from major to minor carps for their sturdiness and initial higher growth, and also a quest for antibiotic-free aqua farming in the subcontinent, mandates search for and evaluation of alternatives. An experiment was performed to investigate the potential of fructooligosaccharide (FOS) and Bacillus subtilis (BS) (alone or as synbiotics) in promoting growth and immunity against infections in Labeo fimbriatus fingerlings. Six iso-nitrogenous and iso-lipidic diets containing combinations of two levels of FOS (0% and 0.5%) and three levels of BS (0, 104, 106 CFU/g feed) were fed to fish for 60 days. At the end of the feeding trial, twenty-four fish from each group were injected intra-peritoneally with pathogenic strain of Aeromonas hydrophila O:18 to test the immunoprotective efficacy of the supplements against bacterial infection. BS, but not FOS, significantly improved (P < 0.05) growth and feed utilisation attributes like percentage weight gain (PWG), specific growth rate (SGR) and feed conversion ratio (FCR). There were interactive effects of FOS and BS on PWG, SGR and FCR; however, the effects were not additive in nature. These beneficial effects of BS, alone or in combination with FOS, were corroborated by increased protease activity, microvilli density and diameter and number of goblet cells. Overall beneficial effects of FOS and BS included improved erythrocyte (RBC), hemoglobin (Hb), total protein and globulin levels. Total leucocyte (WBC) count and immunological parameters like respiratory burst activity of leucocytes (NBT reduction), lysozyme activity, albumin: globulin ratio and post-challenge survival were significantly improved by both FOS and BS, and their dietary combination yielded the highest improvement in these parameters. Synergistic effects of FOS and BS as dietary supplements indicate that a combination of 106 CFU/g BS and 0.5% FOS is optimal to improve growth, feed utilisation, immune functions, and disease resistance in L. fimbriatus fingerlings.


Assuntos
Cyprinidae , Doenças dos Peixes , Infecções por Bactérias Gram-Negativas , Simbióticos , Animais , Aeromonas hydrophila , Ração Animal/análise , Bacillus subtilis , Dieta , Suplementos Nutricionais , Resistência à Doença , Doenças dos Peixes/microbiologia
2.
Sci Rep ; 13(1): 7606, 2023 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-37164991

RESUMO

Therapeutically popular controlled release-enabling technology has forayed into the nutrition sector. Polymer coated forms of L-methionine used in soy protein diets, and its intermediate metabolite, S-adenosyl-L-methionine, used in myriad of medical conditions have proved more efficacious over (highly catabolized) free forms. In this premier study, L-methionine-loaded chitosan nanoparticles (M-NPs) were synthesized using ionic gelation method and their efficacy was evaluated. Biophysical characterization of the NPs was done using a Nanopartica SZ 100 analyser, transmission electron microscopy, and Fourier transform infrared spectroscopy. The M-NPs were spherical and smooth and 218.9 ± 7.4 nm in size and in vitro testing confirmed the controlled release of methionine. A 60-days feeding trial in L. rohita fish fingerlings was conducted. A basal diet suboptimal (0.85%) in methionine was provided with one of the supplements as under: none (control), 0.8% chitosan NPs (0.8% NPs), 1.2% L-methionine (1.2% M) (crystalline free form), 0.6% M-NPs and 1.2% M-NPs. While the addition of 0.6% M-NPs to the basal diet complemented towards meeting the established dietary requirement and resulted in significantly highest (P < 0.05) growth and protein efficiency and sero-immunological test scores (serum total protein, serum globulin, serum albumin: globulin ratio, phagocytic respiratory burst/NBT reduction and lysozyme activity), 1.2% supplementation in either form (free or nano), for being 0.85% excess, was counterproductive. Liver transaminases and dehydrogenases corroborated enhanced growth. It was inferred that part of the methionine requirement in nano form (M-NPs) can confer intended performance and health benefits in animals relying on plant proteins-based diets limiting in this essential amino acid. The study also paves the way for exploring chitosan NPs-based sustained delivery of amino acids in human medical conditions.


Assuntos
Quitosana , Nanopartículas , Animais , Humanos , Preparações de Ação Retardada , Quitosana/química , Metionina , Portadores de Fármacos/química , Nanopartículas/química , Tamanho da Partícula , Espectroscopia de Infravermelho com Transformada de Fourier
3.
J Pharm Pharmacol ; 57(1): 135-43, 2005 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-15639001

RESUMO

The whole extract of the fresh berries of Hippophae rhamnoides L. (RH-3), which has been reported to provide protection to whole mice, various tissues, cells and cell organelles against lethal irradiation, was further investigated for its effects on mitochondria isolated from mouse liver. Superoxide anion, reduced (GSH) and oxidized glutathione (GSSG) levels, NADH-ubiquinone oxidoreductase (complex I), NADH-cytochrome c oxidoreductase (complex I/II), succinate-cytochrome c oxidoreductase (complex II/III), mitochondrial membrane potential (MMP), lipid peroxidation (LPx) and protein oxidation (PO) were determined for RH-3-mediated radioprotective manifestation. Pre-irradiation treatment of mice with RH-3 (30 mg kg(-1,) i. p.; single dose; -30 min) significantly inhibited the radiation-induced increase in superoxide anions, GSSG, thiobarbituric acid reactive substances (TBARS), complex I, complex I/III activity and MMP maximally at 4 h (P < 0.05). This treatment inhibited the oxidation of proteins (P < 0.05) at all the time periods studied here. This study suggests that pre-irradiation treatment of mice with RH-3 protects the functional integrity of mitochondria from radiation-induced oxidative stress.


Assuntos
Hippophae/química , Mitocôndrias Hepáticas/efeitos dos fármacos , Mitocôndrias Hepáticas/efeitos da radiação , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/efeitos da radiação , Protetores contra Radiação , Animais , Complexo I de Transporte de Elétrons/metabolismo , Frutas/química , Glutationa/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , Masculino , Potenciais da Membrana/efeitos dos fármacos , Camundongos , Mitocôndrias Hepáticas/enzimologia , Oxirredução , Extratos Vegetais , Proteínas/química , Proteínas/metabolismo , Succinato Citocromo c Oxirredutase/metabolismo , Superóxidos/metabolismo , Irradiação Corporal Total
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...