Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 9861, 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38684727

RESUMO

180 ∘ domains walls (DWs) of head-to-head/tail-to-tail (H-H/T-T) type in ferroelectric (FE) materials are of immense interest for a comprehensive understanding of the FE attributes as well as harnessing them for new applications. Our first principles calculation suggests that such DW formation in hafnium zirconium oxide (HZO) based FEs depends on the unique attributes of the HZO unit cell, such as polar-spacer segmentation. Cross pattern of the polar and spacer segments in two neighboring domains along the polarization direction (where polar segment of one domain aligns with the spacer segment of another) boosts the stability of such DWs. We further show that low density of oxygen vacancies at the metal-HZO interface and high work function of metal electrodes are conducive for T-T DW formation. On the other hand, high density of oxygen vacancy and low work function of metal electrode favor H-H DW formation. Polarization bound charges at the DW get screened when band bending from depolarization field accumulates holes (electrons) in T-T (H-H) DW. For a comprehensive understanding, we also investigate their FE nature and domain growth mechanism. Our analysis suggests that a minimum thickness criterion of domains has to be satisfied for the stability of H-H/T-T DW and switching of the domains through such DW formation.

2.
Nat Commun ; 6: 7812, 2015 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-26249212

RESUMO

Collective interactions in functional materials can enable novel macroscopic properties like insulator-to-metal transitions. While implementing such materials into field-effect-transistor technology can potentially augment current state-of-the-art devices by providing unique routes to overcome their conventional limits, attempts to harness the insulator-to-metal transition for high-performance transistors have experienced little success. Here, we demonstrate a pathway for harnessing the abrupt resistivity transformation across the insulator-to-metal transition in vanadium dioxide (VO2), to design a hybrid-phase-transition field-effect transistor that exhibits gate controlled steep ('sub-kT/q') and reversible switching at room temperature. The transistor design, wherein VO2 is implemented in series with the field-effect transistor's source rather than into the channel, exploits negative differential resistance induced across the VO2 to create an internal amplifier that facilitates enhanced performance over a conventional field-effect transistor. Our approach enables low-voltage complementary n-type and p-type transistor operation as demonstrated here, and is applicable to other insulator-to-metal transition materials, offering tantalizing possibilities for energy-efficient logic and memory applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...