Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanoscale ; 13(13): 6400-6409, 2021 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-33537691

RESUMO

Cesium-lead halide perovskite nanoparticles are a promising class of luminescent materials for color and efficient displays. However, material stability is the key issue to solve before we can use these materials in modern displays. Encapsulation is one of the most efficient methods that can markedly improve the stability of perovskite nanoparticles against moisture, heat, oxygen, and light. Thus, we urgently need a low-cost, reliable, and device-compatible encapsulation method for the integration of nanomaterials into display devices. Here, we propose a facile encapsulation method to stabilize perovskite nanoparticles in thin polymer porous films. Using porous polymer films, we achieved good photoluminescence stability in the harsh environment of high temperature, high humidity and strong UV illumination. The good UV stability benefitted from the unique optical properties of the porous film. Besides, we observed photoluminescence enhancement of CsPbBr3 nanoparticle films in a high humidity environment. The stable CsPbBr3 nanoparticle thin porous film provides high brightness (236 nits) and great color enhancement for LCDs and is characterized by simple fabrication with easy scalability, thus it is very suitable for modern LCDs.

2.
Small ; 17(3): e2004487, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33345459

RESUMO

Recently, quantum rods (QRs) have been studied heavily for display and lighting applications. QRs offer serious advantages over the quantum dots such as higher light out-coupling coefficient, and polarized emission. The QR enhancement films double liquid crystal display efficiency. However, it is still a challenge to synthesize good quality green (λem  ≈ 520 nm) and blue (λem  ≈ 465 nm) emitting QRs, due to very large bathochromic shift during the shell growth. Furthermore, until now, the presence of cadmium in high-quality QRs is inevitable, but due to its toxicity, RoHS has restricted the amount of cadmium in consumer products. In this article, low Cd core-shell QRs, with a narrow-band luminescence spectrum tuned in the whole visible range, are prepared by replacing Cd with Zn in a one-pot post-synthetic development. These QRs possess the good thermal stability of photoluminescence properties, and therefore, show high performance for the on-chip LED configuration. The designed white LEDs (WLEDs) are characterized by a high brightness of 120000 nits, and color gamut covering 122% NTSC (90% of BT2020), in the 1931CIE color space. Additionally, these LEDs show a high luminous efficiency of 115 lm W-1 . Thus, these quantum rod LED are perfectly viable for display backlighting and lighting applications.

3.
Nanoscale ; 11(43): 20837-20846, 2019 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-31657423

RESUMO

Semiconductor quantum rods (QRs) show a polarized emission, which opens up the possibility of the enhancement of both brightness and color for liquid crystal displays (LCD) in the form of quantum rod enhancement films (QREFs) for LCD backlights. However, the QR alignment over a large area, suitable for displays, is a challenge. Inkjet printing of QREFs, introduced here, allows fabrication of well-aligned, uniform QREFs on photoaligned substrates using optimized QR inks. We observed that the ink composition and printing conditions affect the QR alignment quality significantly. A relative humidity of 50% with an exposure energy of 1 J cm-2 for the photoalignment process provided optimal conditions for QREFs. We have successfully shown a good QR alignment for 2.5-inch films and were able to align QRs in multiple layers. Thus, fabricated QREFs show a polarization ratio of 7.2 : 1 for the emitted light. These QREFs were combined with a blue LED and deployed as a backlight unit for an LCD which shows a brightness of ∼250 nits with an optical efficiency of ∼8%, reaching an NTSC of 109% in a CIE1976 color space. Thus, these printed QREFs, over a large area, provide an unprecedented increase of 77% in the optical efficiency of the LCDs and simultaneously offer better color performance.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...