Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Phys Chem Lett ; : 9714-9722, 2024 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-39284288

RESUMO

Authentication of a product's originality by anticounterfeiting labels represents a crucial point toward protection against forgery. Fast and scalable fabrication methods of original labels with a high degree of protection are in high demand for the protection of valuable goods. Here, we propose a simple strategy for fabrication of hidden security tags with IR luminescent readout by the direct femtosecond laser patterning of silicon-erbium-silicon sandwiched thin films. The choice of laser processing parameters makes possible the creation of random or quasi-regular self-organized surface nanotextures. The controlled laser-driven oxidation accompanying this process provides simultaneous regulation of the film's optical properties and spontaneous emission yield of the embedded Er atoms. The regimes are detected when optically similar patterned areas demonstrate different Er emission intensities, allowing us to create hidden security tags with facile readout at the C-band telecommunication wavelengths. The obtained results take another step toward the application of IR-luminescent erbium-based anticounterfeiting labels for covert and/or forensic security levels.

2.
Nanomaterials (Basel) ; 13(8)2023 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-37110886

RESUMO

Here, we show that direct femtosecond laser nanostructuring of monocrystalline Si wafers in aqueous solutions containing noble-metal precursors (such as palladium dichloride, potassium hexachloroplatinate, and silver nitrate) allows for the creation of nanogratings decorated with mono- (Pd, Pt, and Ag) and bimetallic (Pd-Pt) nanoparticles (NPs). Multi-pulse femtosecond-laser exposure was found to drive periodically modulated ablation of the Si surface, while simultaneous thermal-induced reduction of the metal-containing acids and salts causes local surface morphology decoration with functional noble metal NPs. The orientation of the formed Si nanogratings with their nano-trenches decorated with noble-metal NPs can be controlled by the polarization direction of the incident laser beam, which was justified, for both linearly polarized Gaussian and radially (azimuthally) polarized vector beams. The produced hybrid NP-decorated Si nanogratings with a radially varying nano-trench orientation demonstrated anisotropic antireflection performance, as well as photocatalytic activity, probed by SERS tracing of the paraaminothiophenol-to-dimercaptoazobenzene transformation. The developed single-step maskless procedure of liquid-phase Si surface nanostructuring that proceeds simultaneously with the localized reduction of noble-metal precursors allows for the formation of hybrid Si nanogratings with controllable amounts of mono- and bimetallic NPs, paving the way toward applications in heterogeneous catalysis, optical detection, light harvesting, and sensing.

3.
Nanomaterials (Basel) ; 13(4)2023 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-36839038

RESUMO

The preparation method can considerably affect the structural, morphological, and gas-sensing properties of mixed-oxide materials which often demonstrate superior photocatalytic and sensing performance in comparison with single-metal oxides. In this work, hybrids of semiconductor nanomaterials based on TiO2 and ZnO were prepared by laser ablation of Zn and Ti plates in water and then tested as chemiresistive gas sensors towards volatile organics (2-propanol, acetaldehyde, ethanol, methanol) and ammonia. An infrared millisecond pulsed laser with energy 2.0 J/pulse and a repetition rate of 5 Hz was applied to Zn and Ti metal targets in different ablation sequences to produce two nano-hybrids (TiO2/ZnO and ZnO/TiO2). The surface chemistry, morphology, crystallinity, and phase composition of the prepared hybrids were found to tune their gas-sensing properties. Among all tested gases, sample TiO2/ZnO showed selectivity to ethanol, while sample ZnO/TiO2 sensed 2-propanol at room temperature, both with a detection limit of ~50 ppm. The response and recovery times were found to be 24 and 607 s for the TiO2/ZnO sensor, and 54 and 50 s for its ZnO/TiO2 counterpart, respectively, towards 100 ppm of the target gas at room temperature.

4.
ACS Appl Mater Interfaces ; 15(2): 3336-3347, 2023 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-36602431

RESUMO

Recent progress in hybrid optical nanomaterials composed of dissimilar constituents permitted an improvement in the performance and functionality of novel devices developed for optoelectronics, catalysis, medical diagnostics, and sensing. However, the rational combination of contrasting materials such as noble metals and semiconductors within individual hybrid nanostructures via a ready-to-use and lithography-free fabrication approach is still a challenge. Here, we report on a two-step synthesis of hybrid Au-Si microspheres generated by laser ablation of silicon in isopropanol followed by laser irradiation of the produced Si nanoparticles in the presence of HAuCl4. Thermal reduction of [AuCl4]- species to a metallic gold phase, along with its subsequent mixing with silicon under laser irradiation, creates a nanostructured material with a unique composition and morphology, as revealed by electron microscopy, tomography, and elemental analysis. A combination of basic plasmonic and nanophotonic materials such as gold and silicon within a single microsphere allows for efficient light-to-heat conversion, as well as single-particle SERS sensing with temperature-feedback modality and expanded functionality. Moreover, the characteristic Raman signal and hot-electron-induced nonlinear photoluminescence coexisting within the novel Au-Si hybrids, as well as the commonly criticized randomness of the nanomaterials prepared by laser ablation in liquid, were proved to be useful for the realization of anticounterfeiting labels based on a physically unclonable function approach.

5.
Materials (Basel) ; 15(22)2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-36431575

RESUMO

Combination of dissimilar materials such as noble metals and common semiconductors within unified nanomaterials holds promise for optoelectronics, catalysis and optical sensing. Meanwhile, difficulty of obtaining such hybrid nanomaterials using common lithography-based techniques stimulates an active search for advanced, inexpensive, and straightforward fabrication methods. Here, we report one-pot one-step synthesis of Ag-decorated Si microspheres via nanosecond laser ablation of monocrystalline silicon in isopropanol containing AgNO3. Laser ablation of bulk silicon creates the suspension of the Si microspheres that host further preferential growth of Ag nanoclusters on their surface upon thermal-induced decomposition of AgNO3 species by subsequently incident laser pulses. The amount of the AgNO3 in the working solution controls the density, morphology, and arrangement of the Ag nanoclusters allowing them to achieve strong and uniform decoration of the Si microsphere surface. Such unique morphology makes Ag-decorated Si microspheres promising for molecular identification based on the surface-enhanced Raman scattering (SERS) effect. In particular, the designed single-particles sensing platform was shown to offer temperature-feedback modality as well as SERS signal enhancement up to 106, allowing reliable detection of the adsorbed molecules and tracing their plasmon-driven catalytic transformations. Considering the ability to control the decoration degree of Si microspheres by Ag nanoclusters via amount of the AgNO3, the developed one-pot easy-to-implement PLAL synthesis holds promise for gram-scale production of high-quality hybrid nanomaterial for various nanophotonics and sensing applications.

6.
Materials (Basel) ; 15(22)2022 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-36431587

RESUMO

So far, poly(L-lactic acid), PLLA nanosheets proved to be promising for wound healing. Such biodegradable materials are easy to prepare, bio-friendly, cost-effective, simple to apply and were shown to protect burn wounds and facilitate their healing. At the same time, certain metal ions are known to be essential for wound healing, which is why this study was motivated by the idea of incorporating PLLA nanosheets with Zn2+ ion containing nanoparticles. Upon being applied on wound, such polymer nanosheets should release Zn2+ ions, which is expected to improve wound healing. The work thus focused on preparing PLLA nanosheets embedded with several kinds of Zn-containing nanoparticles, their characterization and ion-release behavior. ZnCl2 and ZnO nanoparticles were chosen because of their different solubility in water, with the intention to see the dynamics of their Zn2+ ion release in liquid medium with pH around 7.4. Interestingly, the prepared PLLA nanosheets demonstrated quit similar ion release rates, reaching the maximum concentration after about 10 h. This finding implies that such polymer materials can be promising as they are expected to release ions within several hours after their application on skin.

7.
Materials (Basel) ; 15(5)2022 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-35269035

RESUMO

Long-term stability in contact with water of organosilane layers formed by octadecyltrimethoxysilane (ODTMS) on polished aluminum alloy (AA2024) through dip-coating was studied by combining SEM, water contact angle measurements, and X-ray photoelectron spectroscopy. Similar organosilane layers were formed on AA2024 coated with permanganate conversion coating, 1,2-bis(triethoxysilyl)ethane (BTSE) and hydrated SiOx as under-layers, after which their long-term durability was also tested. During immersion in water for about one month, all the samples exhibited a decrease in hydrophobicity, implying the prepared organosilane layer was not stable over time, gradually hydrolyzing and letting water interact with the underlying layer. In parallel, SEM images of one-layer samples taken after immersion showed clear signs of local electrochemical corrosion, while XPS analysis confirmed a loss of silicon from the surface layer. The highest stability over time was demonstrated by a one-layer sample prepared in an ethanol/water bath for 5 min and by a similar ODTMS layer prepared on hydrated MnOx as an under-layer.

8.
ACS Appl Mater Interfaces ; 13(45): 54551-54560, 2021 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-34726886

RESUMO

Strong light localization inside the nanoscale gaps provides remarkable opportunities for creation of various medical and biosensing platforms stimulating an active search for inexpensive and easily scalable fabrication at a sub-100 nm resolution. In this paper, self-organized laser-induced periodic surface structures (LIPSSs) with the shortest ever reported periodicity of 70 ± 10 nm were directly imprinted on the crystalline Si wafer upon its direct femtosecond-laser ablation in isopropanol. Appearance of such a nanoscale morphology was explained by the formation of a periodic topography on the surface of photoexcited Si driven by interference phenomena as well as subsequent down-scaling of the imprinted grating period via Rayleigh-Taylor hydrodynamic instability. The produced deep subwavelength LIPSSs demonstrate strong anisotropic anti-reflection performance, ensuring efficient delivery of the incident far-field radiation to the electromagnetic "hot spots" localized in the Si nanogaps. This allows realization of various optical biosensing platforms operating via strong interactions of quantum emitters with nanoscale light fields. The demonstrated 80-fold enhancement of spontaneous emission from the attached nanolayer of organic dye molecules and in situ optical tracing of catalytic molecular transformations substantiate bare and metal-capped deep subwavelength Si LIPSSs as a promising inexpensive multifunctional biosensing platform.


Assuntos
Técnicas Biossensoriais , Lasers , Silício/química , 2-Propanol/química , Hidrodinâmica , Tamanho da Partícula , Propriedades de Superfície
9.
Nanomaterials (Basel) ; 11(2)2021 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-33557328

RESUMO

Here, we present the single-step laser-assisted fabrication of anti-reflective hierarchical surface textures on silicon locally functionalized with a photoluminescent (PL) molecular nanolayer. Using femtosecond-laser ablation of commercial crystalline Si wafers placed under a layer of a solution containing rhodamine 6G (R6G) a triethoxysilyl derivative, we fabricated ordered arrays of microconical protrusions with self-organized nanoscale surface morphology. At the same time, the laser-induced temperature increase facilitated surface activation and local binding of the R6G derivative to the as-fabricated nanotextured surface. The produced dual-scale surface textures showed remarkable broadband (visible to near-IR) light-absorbing properties with an averaged reflectivity of around 1%, and the capping molecular nanolayer demonstrated a strongly enhanced PL yield. By performing a pH sensing test using the produced nanotextured substrate, we confirmed the retention of sensory properties of the molecules attached to the surface and validated the potential applicability of the high-performing liquid-assisted laser processing as a key technology for the development of innovative multifunctional sensing devices in which the textured substrate (e.g., ultra-black semiconductor) plays a dual role as a support and PL signal amplifier.

10.
ACS Appl Mater Interfaces ; 13(5): 6522-6531, 2021 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-33502160

RESUMO

The rational combination of plasmonic and all-dielectric concepts within hybrid nanomaterials provides a promising route toward devices with ultimate performance and extended modalities. Spectral matching of plasmonic and Mie-type resonances for such nanostructures can only be achieved for their dissimilar characteristic sizes, thus making the resulting hybrid nanostructure geometry complex for practical realization and large-scale replication. Here, we produced amorphous TiO2 nanospheres decorated and doped with Au nanoclusters via single-step nanosecond-laser irradiation of commercially available TiO2 nanopowders dispersed in aqueous HAuCl4. Fabricated hybrids demonstrate remarkable light-absorbing properties (averaged value ≈96%) in the visible and near-IR spectral range mediated by bandgap reduction of the laser-processed amorphous TiO2 as well as plasmon resonances of the decorating Au nanoclusters. The findings are supported by optical spectroscopy, electron energy loss spectroscopy, transmission electron microscopy, and electromagnetic modeling. Light-absorbing and plasmonic properties of the produced hybrids were implemented to demonstrate catalytically passive SERS biosensor for identification of analytes at trace concentrations and solar steam generator that permitted to increase water evaporation rate by 2.5 times compared with that of pure water under identical 1 sun irradiation conditions.

11.
Nanomaterials (Basel) ; 10(12)2020 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-33291684

RESUMO

Three-dimensional porous nanostructures made of noble metals represent novel class of nanomaterials promising for nonlinear nanooptics and sensors. Such nanostructures are typically fabricated using either reproducible yet time-consuming and costly multi-step lithography protocols or less reproducible chemical synthesis that involve liquid processing with toxic compounds. Here, we combined scalable nanosecond-laser ablation with advanced engineering of the chemical composition of thin substrate-supported Au films to produce nanobumps containing multiple nanopores inside. Most of the nanopores hidden beneath the nanobump surface can be further uncapped using gentle etching of the nanobumps by an Ar-ion beam to form functional 3D plasmonic nanosponges. The nanopores 10-150 nm in diameter were found to appear via laser-induced explosive evaporation/boiling and coalescence of the randomly arranged nucleation sites formed by nitrogen-rich areas of the Au films. Density of the nanopores can be controlled by the amount of the nitrogen in the Au films regulated in the process of their magnetron sputtering assisted with nitrogen-containing discharge gas.

12.
Opt Express ; 25(9): 9634-9646, 2017 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-28468346

RESUMO

In this paper, we experimentally demonstrate simultaneous wavelength and orbital angular momentum (OAM) multiplexing/demultiplexing of 10 Gbit/s data streams using a new on-chip micro-component-tunable MEMS-based Fabry-Perot filter integrated with a spiral phase plate. In the experiment, two wavelengths, each of them carrying two channels with zero and nonzero OAMs, form four independent information channels. In case of spacing between wavelength channels of 0.8 nm and intensity modulation, power penalties relative to the transmission of one channel do not exceed 1.45, 0.79 and 0.46 dB at the hard-decision forward-error correction (HD-FEC) bit-error-rate (BER) limit 3.8 × 10-3 when multiplexing a Gaussian beam and OAM beams of azimuthal orders 1, 2 and 3 respectively. In case of phase modulation, power penalties do not exceed 1.77, 0.54 and 0.79 dB respectively. At the 0.4 nm wavelength grid, maximum power penalties at the HD-FEC BER threshold relative to the 0.8 nm wavelength spacing read 0.83, 0.84 and 1.15 dB when multiplexing a Gaussian beam and OAM beams of 1st, 2nd and 3rd orders respectively. The novelty and impact of the proposed filter design is in providing practical, integrable, cheap, and reliable transformation of OAM states simultaneously with the selection of a particular wavelength in wavelength division multiplexing (WDM). The proposed on-chip device can be useful in future high-capacity optical communications with spatial- and wavelength-division multiplexing, especially for short-range communication links and optical interconnects.

13.
Opt Express ; 24(17): 18898-906, 2016 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-27557171

RESUMO

Pulsed laser nanotexturing of metal films represents an ultra-fast, high-performance and cost-effective processing technology for fabrication of various functional surfaces widely used in plasmonics, biosensing, and photovoltaics. However, this approach usually requires high-NA lenses to focus a laser beam onto a few-micron spot as well as a micropositioning platform to move this spot along the sample surface, which increases the cost of the produced functional surfaces and limits the performance of laser-assisted nanotexturing techniques. In this paper we report on a laser-assisted technology for the fabrication of large-scale nanotextured metal substrates. In our approach, speckle-modulated patterns obtained by passing nanosecond laser pulses through the simplest diffusive object were utilized to cover a thin gold film with closely packed micron-sized structures - nanojets, nanobumps and through holes - previously reported only for single-shot nanoablation with tightly focused laser beams. The presented easy-to-implement technology, being one of the simplest of ever reported, since it requires neither focusing lenses nor micropositioning platforms, was shown to provide a way to pattern millimeter-size areas with the nano-sized jets at an average recording density of 35∙103 nanostructures per square millimeter and an average recording speed of 4.5·103 nanostructures per pulse. The fabricated nanotextured Au substrates were shown to yield spatially uniform surface-enhanced fluorescence signals from the Rhodamine 6G organic dye with an averaged 5.3-fold enhancement factor as compared with non-treated Au surface.

14.
Sci Rep ; 6: 19410, 2016 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-26776569

RESUMO

Simple high-performance, two-stage hybrid technique was developed for fabrication of different plasmonic nanostructures, including nanorods, nanorings, as well as more complex structures on glass substrates. In this technique, a thin noble-metal film on a dielectric substrate is irradiated by a single tightly focused nanosecond laser pulse and then the modified region is slowly polished by an accelerated argon ion (Ar(+)) beam. As a result, each nanosecond laser pulse locally modifies the initial metal film through initiation of fast melting and subsequent hydrodynamic processes, while the following Ar(+)-ion polishing removes the rest of the film, revealing the hidden topography features and fabricating separate plasmonic structures on the glass substrate. We demonstrate that the shape and lateral size of the resulting functional plasmonic nanostructures depend on the laser pulse energy and metal film thickness, while subsequent Ar(+)-ion polishing enables to vary height of the resulting nanostructures. Plasmonic properties of the fabricated nanostructures were characterized by dark-field micro-spectroscopy, Raman and photoluminescence measurements performed on single nanofeatures, as well as by supporting numerical calculations of the related electromagnetic near-fields and Purcell factors. The developed simple two-stage technique represents a new step towards direct large-scale laser-induced fabrication of highly ordered arrays of complex plasmonic nanostructures.

15.
Opt Express ; 22(16): 19149-55, 2014 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-25321001

RESUMO

We present a novel optical element - fiber microaxicon (FMA) for laser radiation focusing into a diffraction-limited spot with Bessel-like profile as well as for precision laser nanostructuring of metal film surfaces. Using the developed FMA for single-pulse irradiation of Au/Pd metal films on quartz substrate we have demonstrated the formation of submicron hollow microbumps with a small spike atop as well as hollow spherical nanoparticles. Experimental conditions for controllable and reproducible formation of ordered arrays of such microstructures were defined. The internal structure of the fabricated nanoparticles and nanobumps was experimentally studied using both argon ions polishing and scanning electron microscopy. These methods reveal a porous inner structure of laser-induced nanoparticles and nanobumps, which presumably indicates that a subsurface boiling of the molten metal film is a key mechanism determining the formation process of such structures.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA