Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 111(22): 8055-60, 2014 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-24835175

RESUMO

Like liquid droplets, cellular aggregates, also called "living droplets," spread onto adhesive surfaces. When deposited onto fibronectin-coated glass or polyacrylamide gels, they adhere and spread by protruding a cellular monolayer (precursor film) that expands around the droplet. The dynamics of spreading results from a balance between the pulling forces exerted by the highly motile cells at the periphery of the film, and friction forces associated with two types of cellular flows: (i) permeation, corresponding to the entry of the cells from the aggregates into the film; and (ii) slippage as the film expands. We characterize these flow fields within a spreading aggregate by using fluorescent tracking of individual cells and particle imaging velocimetry of cell populations. We find that permeation is limited to a narrow ring of width ξ (approximately a few cells) at the edge of the aggregate and regulates the dynamics of spreading. Furthermore, we find that the subsequent spreading of the monolayer depends heavily on the substrate rigidity. On rigid substrates, the migration of the cells in the monolayer is similar to the flow of a viscous liquid. By contrast, as the substrate gets softer, the film under tension becomes unstable with nucleation and growth of holes, flows are irregular, and cohesion decreases. Our results demonstrate that the mechanical properties of the environment influence the balance of forces that modulate collective cell migration, and therefore have important implications for the spreading behavior of tissues in both early development and cancer.


Assuntos
Adesão Celular/fisiologia , Comunicação Celular/fisiologia , Movimento Celular/fisiologia , Modelos Biológicos , Sarcoma/patologia , Resinas Acrílicas , Adesivos , Animais , Caderinas/metabolismo , Linhagem Celular Tumoral , Progressão da Doença , Fricção , Proteínas de Fluorescência Verde/metabolismo , Lipídeo A/análogos & derivados , Proteínas Luminescentes/metabolismo , Mecanotransdução Celular/fisiologia , Camundongos , Microscopia Confocal/métodos , Sarcoma/metabolismo , Agentes Molhantes , Proteína Vermelha Fluorescente
2.
Proc Natl Acad Sci U S A ; 110(37): 14843-8, 2013 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-23980147

RESUMO

Deciphering the multifactorial determinants of tumor progression requires standardized high-throughput preparation of 3D in vitro cellular assays. We present a simple microfluidic method based on the encapsulation and growth of cells inside permeable, elastic, hollow microspheres. We show that this approach enables mass production of size-controlled multicellular spheroids. Due to their geometry and elasticity, these microcapsules can uniquely serve as quantitative mechanical sensors to measure the pressure exerted by the expanding spheroid. By monitoring the growth of individual encapsulated spheroids after confluence, we dissect the dynamics of pressure buildup toward a steady-state value, consistent with the concept of homeostatic pressure. In turn, these confining conditions are observed to increase the cellular density and affect the cellular organization of the spheroid. Postconfluent spheroids exhibit a necrotic core cemented by a blend of extracellular material and surrounded by a rim of proliferating hypermotile cells. By performing invasion assays in a collagen matrix, we report that peripheral cells readily escape preconfined spheroids and cell-cell cohesivity is maintained for freely growing spheroids, suggesting that mechanical cues from the surrounding microenvironment may trigger cell invasion from a growing tumor. Overall, our technology offers a unique avenue to produce in vitro cell-based assays useful for developing new anticancer therapies and to investigate the interplay between mechanics and growth in tumor evolution.


Assuntos
Invasividade Neoplásica/patologia , Invasividade Neoplásica/fisiopatologia , Esferoides Celulares/patologia , Esferoides Celulares/fisiologia , Alginatos , Animais , Fenômenos Biomecânicos , Cápsulas , Contagem de Células , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Progressão da Doença , Elasticidade , Ácido Glucurônico , Células HeLa , Ácidos Hexurônicos , Humanos , Mecanotransdução Celular , Camundongos , Técnicas Analíticas Microfluídicas/instrumentação , Microambiente Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...