Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Environ Manage ; 267: 110647, 2020 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-32421677

RESUMO

Commercial kitchen wastewaters are typically strong organic and fat-rich effluents, often identified as major contributors to fatberg formation and associated blockages in sewers. Experimental trials were done using synthetic kitchen wastewater to understand the complex reactions involved in microbial remediation in grease traps/separators prior discharge in sewers. The principle organic components (FOG, carbohydrate and protein nitrogen), were varied using ranges observed in a previous study on real kitchen wastewater characterisation. A model bacterium, Bacillus licheniformis NCIMB 9375, was used to evaluate microbial utilisation of the different organic fractions in relation to fat, oil and grease (FOG) degradation. Novel results in the treatment of these effluents showed that, the presence and concentration of alternative carbon sources and the ratio of carbon to nitrogen (COD:N) had great influence on FOG-degradation response. For example, FOG removal decreased from 24 to 10 mg/l/h when glucose was substitute for starch at equivalent concentrations (500 mg/l); and from 26 to 5 mg/l/h when initial COD:N increased from 45:1 to 147:1. The dominant influence of COD:N was validated using a commercial bioadditive and real kitchen wastewater adjusted to different COD:N ratios, confirming the strong influence of kitchen wastewater composition on bioremediation outcomes. These results can therefore have major implications for biological management of FOG in kitchens and sewers as they provide a scientific explanation for bioremediation success or failure.


Assuntos
Óleos , Águas Residuárias , Biodegradação Ambiental , Hidrocarbonetos
2.
J Environ Manage ; 252: 109657, 2019 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-31604184

RESUMO

Essential for the selection of a reliable treatment system is the characterisation of the effluent to treat. Kitchen wastewater (KWW) from food service establishments (FSEs) is a strong organic and fat-rich effluent whose characterisation has not been sufficiently addressed. KWW composition is highly variable and linked to the FSE's size, the type of meals prepared and the amount of water used during the cleaning. COD, TSS and fat content (FOG) are the most common parameters found in literature. However, other physical and chemical parameters (e.g. temperature, pH, oil droplets characteristics and trace elements), correlated to commercial kitchen cleaning practices rather than the specific effluent, but equally influential on the treatment efficiencies of both physical and biological methods, have hardly been investigated. A comprehensive characterisation of wastewaters from three food service establishments was used to generate data to support the selection of appropriate FOG mitigation methods. Two novel analytical methods were used to quantify the proportion of emulsified FOG and associated droplet size from different kitchen washing effluents. The results showed that more than 90% of the FOG from the dishwasher effluent and around 35% of sink one was emulsified, with droplet sizes less than 100 µm, well below the removal capabilities of conventional grease interceptors, but easily removed using biological means. From the WW composition results, a formula for predictive modelling was derived to represent average organic matter composition for kitchen wastewater as C20H38O10N, applicable in remediation processes. These results offer a good starting point for the design, operation, and optimisation of wastewater treatment systems of oil-rich KWW.


Assuntos
Serviços de Alimentação , Águas Residuárias , Hidrocarbonetos , Temperatura , Eliminação de Resíduos Líquidos , Água
4.
Med J Aust ; 2(19): 652, 1977 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-607105
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...