Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Neurol Ther ; 13(1): 183-219, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38190001

RESUMO

INTRODUCTION: Duchenne muscular dystrophy (DMD) is a genetic muscle disorder that manifests during early childhood and is ultimately fatal. Recently approved treatments targeting the genetic cause of DMD are limited to specific subpopulations of patients, highlighting the need for therapies with wider applications. Pharmacologic inhibition of myostatin, an endogenous inhibitor of muscle growth produced almost exclusively in skeletal muscle, has been shown to increase muscle mass in several species, including humans. Taldefgrobep alfa is an anti-myostatin recombinant protein engineered to bind to and block myostatin signaling. Preclinical studies of taldefgrobep alfa demonstrated significant decreases in myostatin and increased lower limb volume in three animal species, including dystrophic mice. METHODS: This manuscript reports the cumulative data from three separate clinical trials of taldefgrobep alfa in DMD: a phase 1 study in healthy adult volunteers (NCT02145234), and two randomized, double-blind, placebo-controlled studies in ambulatory boys with DMD-a phase 1b/2 trial assessing safety (NCT02515669) and a phase 2/3 trial including the North Star Ambulatory Assessment (NSAA) as the primary endpoint (NCT03039686). RESULTS: In healthy adult volunteers, taldefgrobep alfa was generally well tolerated and resulted in a significant increase in thigh muscle volume. Treatment with taldefgrobep alfa was associated with robust dose-dependent suppression of free myostatin. In the phase 1b/2 trial, myostatin suppression was associated with a positive effect on lean body mass, though effects on muscle mass were modest. The phase 2/3 trial found that the effects of treatment did not meet the primary endpoint pre-specified futility analysis threshold (change from baseline of ≥ 1.5 points on the NSAA total score). CONCLUSIONS: The futility analysis demonstrated that taldefgrobep alfa did not result in functional change for boys with DMD. The program was subsequently terminated in 2019. Overall, there were no safety concerns, and no patients were withdrawn from treatment as a result of treatment-related adverse events or serious adverse events. TRIAL REGISTRATION: NCT02145234, NCT02515669, NCT03039686.


The goal of this program was to develop a treatment to improve muscle function in patients with Duchenne muscular dystrophy (DMD). Muscle weakness in patients with DMD is progressive, leading to the irreversible loss of walking ability and eventually death due to cardiorespiratory failure. One potential way of improving muscle function is to target a protein known as myostatin that acts in healthy muscle to regulate muscle size. Studies in animals have shown that blocking myostatin can increase muscle size. Taldefgrobep alfa is a drug designed to block myostatin and it was shown to induce muscle growth in animals. A study in healthy volunteers found that taldefgrobep alfa was able to increase muscle size in humans and was not associated with safety concerns. Following this, a study was conducted in boys with DMD who were either treated with taldefgrobep alfa or a placebo. This first study in patients found that treatment was able to reduce myostatin levels and had a small effect on muscle size, supporting a larger trial in more patients with DMD. The aim of the larger trial was to test if taldefgrobep alfa had a meaningful effect on muscle function in patients with DMD. Results from this key trial did not meet the targeted improvement in function and a decision was made to end the trial and halt the use of taldefgrobep alfa as a potential treatment for DMD. No patients stopped treatment with taldefgrobep alfa as a result of adverse safety effects and no safety concerns were identified.

2.
Ann Neurol ; 94(5): 955-968, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37539981

RESUMO

OBJECTIVE: Delandistrogene moxeparvovec is approved in the USA for the treatment of ambulatory patients (4-5 years) with Duchenne muscular dystrophy. ENDEAVOR (SRP-9001-103; NCT04626674) is a single-arm, open-label study to evaluate delandistrogene moxeparvovec micro-dystrophin expression, safety, and functional outcomes following administration of commercial process delandistrogene moxeparvovec. METHODS: In cohort 1 of ENDEAVOR (N = 20), eligible ambulatory males, aged ≥4 to <8 years, received a single intravenous infusion of delandistrogene moxeparvovec (1.33 × 1014 vg/kg). The primary endpoint was change from baseline (CFBL) to week 12 in delandistrogene moxeparvovec micro-dystrophin by western blot. Additional endpoints evaluated included: safety; vector genome copies; CFBL to week 12 in muscle fiber-localized micro-dystrophin by immunofluorescence; and functional assessments, including North Star Ambulatory Assessment, with comparison with a propensity score-weighted external natural history control. RESULTS: The 1-year safety profile of commercial process delandistrogene moxeparvovec in ENDEAVOR was consistent with safety data reported in other delandistrogene moxeparvovec trials (NCT03375164 and NCT03769116). Delandistrogene moxeparvovec micro-dystrophin expression was robust, with sarcolemmal localization at week 12; mean (SD) CFBL in western blot, 54.2% (42.6); p < 0.0001. At 1 year, patients demonstrated stabilized or improved North Star Ambulatory Assessment total scores; mean (SD) CFBL, +4.0 (3.5). Treatment versus a propensity score-weighted external natural history control demonstrated a statistically significant difference in least squares mean (standard error) CFBL in North Star Ambulatory Assessment, +3.2 (0.6) points; p < 0.0001. INTERPRETATION: Results confirm efficient transduction of muscle by delandistrogene moxeparvovec. One-year post-treatment, delandistrogene moxeparvovec was well tolerated, and demonstrated stabilized or improved motor function, suggesting a clinical benefit for patients with Duchenne muscular dystrophy. ANN NEUROL 2023;94:955-968.


Assuntos
Distrofia Muscular de Duchenne , Masculino , Humanos , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/terapia , Distrofina/genética , Terapia Genética/métodos , Infusões Intravenosas , Fibras Musculares Esqueléticas
3.
J Neuromuscul Dis ; 9(2): 335-346, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34958044

RESUMO

In 2019, stride velocity 95th centile (SV95C) became the first wearable-derived digital clinical outcome assessment (COA) qualified by the European Medicines Agency (EMA) for use as a secondary endpoint in trials for Duchenne muscular dystrophy. SV95C was approved via the EMA's qualification pathway for novel methodologies for medicine development, which is a voluntary procedure for assessing the regulatory acceptability of innovative methods used in pharmaceutical research and development. SV95C is an objective, real-world digital ambulation measure of peak performance, representing the speed of the fastest strides taken by the wearer over a recording period of 180 hours. SV95C is correlated with traditional clinic-based assessments of motor function and has greater sensitivity to clinical change over 6 months than other wearable-derived stride variables, for example, median stride length or velocity. SV95C overcomes many limitations of episodic, clinic-based motor function testing, allowing the assessment of ambulation ability between clinic visits and under free-living conditions. Here we highlight considerations and challenges in developing SV95C using evidence generated by a high-performance wearable sensor. We also provide a commentary of the device's technical capabilities, which were a determining factor in the regulatory approval of SV95C. This article aims to provide insights into the methods employed, and the challenges faced, during the regulatory approval process for researchers developing new digital tools for patients with diseases that affect motor function.


Assuntos
Distrofia Muscular de Duchenne , Dispositivos Eletrônicos Vestíveis , Humanos , Caminhada
4.
Health Qual Life Outcomes ; 19(1): 184, 2021 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-34311756

RESUMO

BACKGROUND: In clinical trials for rare diseases, such as Duchenne muscular dystrophy, clinical outcome assessments (COA) used to assess treatment benefit are often generic and may not be sensitive enough to detect change in specific patient populations. Thus, there is a need for disease specific COAs that track meaningful change among individuals. When developing such measures, input from clinicians, caregivers and patients is critical for assessing clinically relevant concepts and ensuring validity of the measure. METHOD: The aim of this study was to develop two Duchenne-specific global impression items for use in clinical trials. The development of the Duchenne Clinical Global Impression of Change (CGI-C) and Caregiver Global Impression of Change (CaGI-C) was informed by findings from concept elicitation (CE) interviews with clinicians, caregivers and individuals with Duchenne. Through cognitive debriefing (CD) interviews, clinicians and caregivers evaluated draft CGI-C and CaGI-C items to ensure relevance and understanding of the items and instructions. Suggestions made during the CD interviews were incorporated into the finalized CGI-C and CaGI-C measures. RESULTS: The symptoms most frequently reported by clinicians, caregivers and individuals with Duchenne were muscle weakness, fatigue, cardiac difficulties and pain. Regarding physical functioning, all three populations noted that small changes in functional ability were meaningful, particularly when independence was impacted. Caregivers and clinicians reported that changes in speed, endurance and quality of movement were important, as was improvement in the ability of individuals to keep up with their peers. A change in the ability to complete everyday activities was also significant to families. These results were used to create two global impression of change items and instruction documents for use by clinicians (CGI-C) and caregivers (CaGI-C). Overall, both items were well understood by participants. The descriptions and examples developed from the CE interviews were reported to be relevant and appropriate for illustrating different levels of meaningful change in patients with Duchenne. Modifications were made based on caregiver and clinician CD feedback . CONCLUSIONS: As part of a holistic measurement strategy, such COA can be incorporated into the clinical trial setting to assess global changes in relevant symptoms and functional impacts associated with Duchenne.


Assuntos
Cuidadores/psicologia , Distrofia Muscular de Duchenne/psicologia , Qualidade de Vida , Adolescente , Adulto , Criança , Feminino , Humanos , Masculino , Distrofia Muscular de Duchenne/terapia
5.
Nat Commun ; 11(1): 4510, 2020 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-32908143

RESUMO

With human median lifespan extending into the 80s in many developed countries, the societal burden of age-related muscle loss (sarcopenia) is increasing. mTORC1 promotes skeletal muscle hypertrophy, but also drives organismal aging. Here, we address the question of whether mTORC1 activation or suppression is beneficial for skeletal muscle aging. We demonstrate that chronic mTORC1 inhibition with rapamycin is overwhelmingly, but not entirely, positive for aging mouse skeletal muscle, while genetic, muscle fiber-specific activation of mTORC1 is sufficient to induce molecular signatures of sarcopenia. Through integration of comprehensive physiological and extensive gene expression profiling in young and old mice, and following genetic activation or pharmacological inhibition of mTORC1, we establish the phenotypically-backed, mTORC1-focused, multi-muscle gene expression atlas, SarcoAtlas (https://sarcoatlas.scicore.unibas.ch/), as a user-friendly gene discovery tool. We uncover inter-muscle divergence in the primary drivers of sarcopenia and identify the neuromuscular junction as a focal point of mTORC1-driven muscle aging.


Assuntos
Envelhecimento/fisiologia , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Fibras Musculares Esqueléticas/patologia , Junção Neuromuscular/patologia , Sarcopenia/patologia , Envelhecimento/efeitos dos fármacos , Animais , Linhagem Celular , Modelos Animais de Doenças , Eletromiografia , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/fisiologia , Humanos , Microdissecção e Captura a Laser , Masculino , Alvo Mecanístico do Complexo 1 de Rapamicina/antagonistas & inibidores , Alvo Mecanístico do Complexo 1 de Rapamicina/genética , Camundongos , Mioblastos , Junção Neuromuscular/efeitos dos fármacos , Técnicas de Patch-Clamp , RNA-Seq , Sarcopenia/genética , Sarcopenia/fisiopatologia , Sarcopenia/prevenção & controle , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Sirolimo/administração & dosagem
6.
Nat Commun ; 10(1): 3187, 2019 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-31320633

RESUMO

Loss of innervation of skeletal muscle is a determinant event in several muscle diseases. Although several effectors have been identified, the pathways controlling the integrated muscle response to denervation remain largely unknown. Here, we demonstrate that PKB/Akt and mTORC1 play important roles in regulating muscle homeostasis and maintaining neuromuscular endplates after nerve injury. To allow dynamic changes in autophagy, mTORC1 activation must be tightly balanced following denervation. Acutely activating or inhibiting mTORC1 impairs autophagy regulation and alters homeostasis in denervated muscle. Importantly, PKB/Akt inhibition, conferred by sustained mTORC1 activation, abrogates denervation-induced synaptic remodeling and causes neuromuscular endplate degeneration. We establish that PKB/Akt activation promotes the nuclear import of HDAC4 and is thereby required for epigenetic changes and synaptic gene up-regulation upon denervation. Hence, our study unveils yet-unknown functions of PKB/Akt-mTORC1 signaling in the muscle response to nerve injury, with important implications for neuromuscular integrity in various pathological conditions.


Assuntos
Autofagia/fisiologia , Histona Desacetilases/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Denervação Muscular , Músculo Esquelético/patologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Animais , Linhagem Celular , Alvo Mecanístico do Complexo 1 de Rapamicina/antagonistas & inibidores , Alvo Mecanístico do Complexo 1 de Rapamicina/genética , Camundongos , Placa Motora/patologia , Atrofia Muscular/patologia , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-akt/genética
7.
Skelet Muscle ; 6: 13, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27004103

RESUMO

BACKGROUND: The mammalian target of rapamycin complex 1 (mTORC1) is a central node in a network of signaling pathways controlling cell growth and survival. This multiprotein complex integrates external signals and affects different nutrient pathways in various organs. However, it is not clear how alterations of mTORC1 signaling in skeletal muscle affect whole-body metabolism. RESULTS: We characterized the metabolic phenotype of young and old raptor muscle knock-out (RAmKO) and TSC1 muscle knock-out (TSCmKO) mice, where mTORC1 activity in skeletal muscle is inhibited or constitutively activated, respectively. Ten-week-old RAmKO mice are lean and insulin resistant with increased energy expenditure, and they are resistant to a high-fat diet (HFD). This correlates with an increased expression of histone deacetylases (HDACs) and a downregulation of genes involved in glucose and fatty acid metabolism. Ten-week-old TSCmKO mice are also lean, glucose intolerant with a decreased activation of protein kinase B (Akt/PKB) targets that regulate glucose transporters in the muscle. The mice are resistant to a HFD and show reduced accumulation of glycogen and lipids in the liver. Both mouse models suffer from a myopathy with age, with reduced fat and lean mass, and both RAmKO and TSCmKO mice develop insulin resistance and increased intramyocellular lipid content. CONCLUSIONS: Our study shows that alterations of mTORC1 signaling in the skeletal muscle differentially affect whole-body metabolism. While both inhibition and constitutive activation of mTORC1 induce leanness and resistance to obesity, changes in the metabolism of muscle and peripheral organs are distinct. These results indicate that a balanced mTORC1 signaling in the muscle is required for proper metabolic homeostasis.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Metabolismo Energético , Complexos Multiproteicos/metabolismo , Músculo Esquelético/enzimologia , Serina-Treonina Quinases TOR/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/deficiência , Proteínas Adaptadoras de Transdução de Sinal/genética , Fatores Etários , Animais , Biomarcadores/sangue , Glicemia/metabolismo , Composição Corporal , Dieta Hiperlipídica , Genótipo , Histona Desacetilases/genética , Histona Desacetilases/metabolismo , Insulina/sangue , Resistência à Insulina/genética , Alvo Mecanístico do Complexo 1 de Rapamicina , Camundongos Knockout , Doenças Musculares/enzimologia , Doenças Musculares/genética , Doenças Musculares/fisiopatologia , Obesidade/enzimologia , Obesidade/genética , Obesidade/prevenção & controle , Fenótipo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteína Regulatória Associada a mTOR , Transdução de Sinais , Magreza/enzimologia , Magreza/genética , Fatores de Tempo , Proteína 1 do Complexo Esclerose Tuberosa , Proteínas Supressoras de Tumor/deficiência , Proteínas Supressoras de Tumor/genética , Regulação para Cima
8.
Sci Signal ; 8(402): ra113, 2015 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-26554817

RESUMO

Skeletal muscle is the largest organ, comprising 40% of the total body lean mass, and affects whole-body metabolism in multiple ways. We investigated the signaling pathways involved in this process using TSCmKO mice, which have a skeletal muscle-specific depletion of TSC1 (tuberous sclerosis complex 1). This deficiency results in the constitutive activation of mammalian target of rapamycin complex 1 (mTORC1), which enhances cell growth by promoting protein synthesis. TSCmKO mice were lean, with increased insulin sensitivity, as well as changes in white and brown adipose tissue and liver indicative of increased fatty acid oxidation. These differences were due to increased plasma concentrations of fibroblast growth factor 21 (FGF21), a hormone that stimulates glucose uptake and fatty acid oxidation. The skeletal muscle of TSCmKO mice released FGF21 because of mTORC1-triggered endoplasmic reticulum (ER) stress and activation of a pathway involving PERK (protein kinase RNA-like ER kinase), eIF2α (eukaryotic translation initiation factor 2α), and ATF4 (activating transcription factor 4). Treatment of TSCmKO mice with a chemical chaperone that alleviates ER stress reduced FGF21 production in muscle and increased body weight. Moreover, injection of function-blocking antibodies directed against FGF21 largely normalized the metabolic phenotype of the mice. Thus, sustained activation of mTORC1 signaling in skeletal muscle regulated whole-body metabolism through the induction of FGF21, which, over the long term, caused severe lipodystrophy.


Assuntos
Fatores de Crescimento de Fibroblastos/metabolismo , Complexos Multiproteicos/metabolismo , Músculo Esquelético/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Animais , Estresse do Retículo Endoplasmático , Ácidos Graxos/metabolismo , Feminino , Fatores de Crescimento de Fibroblastos/antagonistas & inibidores , Glucose/metabolismo , Resistência à Insulina , Lipodistrofia/etiologia , Lipodistrofia/metabolismo , Masculino , Alvo Mecanístico do Complexo 1 de Rapamicina , Camundongos , Camundongos Knockout , Músculo Esquelético/efeitos dos fármacos , Oxirredução , Fenótipo , Fenilbutiratos/farmacologia , Transdução de Sinais , Proteína 1 do Complexo Esclerose Tuberosa , Proteínas Supressoras de Tumor/deficiência , Proteínas Supressoras de Tumor/genética
9.
Neurochem Int ; 90: 152-65, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26265052

RESUMO

Protein misfolding, mitochondrial dysfunction and oxidative stress are common pathomechanisms that underlie neurodegenerative diseases. In prion disease, central to these processes is the post-translational transformation of cellular prion protein (PrP(c)) to the aberrant conformationally altered isoform; PrP(Sc). This can trigger oxidative reactions and impair mitochondrial function by increasing levels of peroxynitrite, causing damage through formation of hydroxyl radicals or via nitration of tyrosine residues on proteins. The 6 member Peroxiredoxin (Prdx) family of redox proteins are thought to be critical protectors against oxidative stress via reduction of H2O2, hydroperoxides and peroxynitrite. In our in vitro studies cellular metabolism of SK-N-SH human neuroblastoma cells was significantly decreased in the presence of H2O2 (oxidative stressor) or CoCl2 (cellular hypoxia), but was rescued by treatment with exogenous Prdx6, suggesting that its protective action is in part mediated through a direct action. We also show that CoCl2-induced apoptosis was significantly decreased by treatment with exogenous Prdx6. We proposed a redox regulator role for Prdx6 in regulating and maintaining cellular homeostasis via its ability to control ROS levels that could otherwise accelerate the emergence of prion-related neuropathology. To confirm this, we established prion disease in mice with and without astrocyte-specific antioxidant protein Prdx6, and demonstrated that expression of Prdx6 protein in Prdx6 Tg ME7-animals reduced severity of the behavioural deficit, decreased neuropathology and increased survival time compared to Prdx6 KO ME7-animals. We conclude that antioxidant Prdx6 attenuates prion-related neuropathology, and propose that augmentation of endogenous Prdx6 protein represents an attractive adjunct therapeutic approach for neurodegenerative diseases.


Assuntos
Antioxidantes/farmacologia , Peróxido de Hidrogênio/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Peroxirredoxina VI/farmacologia , Príons/metabolismo , Animais , Apoptose/efeitos dos fármacos , Hipóxia Celular/efeitos dos fármacos , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mitocôndrias/metabolismo , Espécies Reativas de Oxigênio/metabolismo
10.
Acta Neuropathol Commun ; 2: 75, 2014 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-24972680

RESUMO

Accumulation of ß-amyloid (Aß) in the brain is essential to Alzheimer's disease (AD) pathogenesis. Carriers of the apolipoprotein E (APOE) ε4 allele demonstrate greatly increased AD risk and enhanced brain Aß deposition. In contrast, APOE ε2 allele carries show reduced AD risk, later age of disease onset, and lesser Aß accumulation. However, it remains elusive whether the apoE2 isoform exerts truly protective effect against Aß pathology or apoE2 plays deleterious role albeit less pronounced than the apoE4 isoform. Here, we characterized APPSW/PS1dE9/APOE ε2-TR (APP/E2) and APPSW/PS1dE9/APOE ε4-TR (APP/E4) mice, with targeted replacement (TR) of the murine Apoe for human ε2 or ε4 alleles, and used these models to investigate effects of pharmacological inhibition of the apoE/Aß interaction on Aß deposition and neuritic degeneration. APP/E2 and APP/E4 mice replicate differential effect of human apoE isoforms on Aß pathology with APP/E4 mice showing a several-fold greater load of Aß plaques, insoluble brain Aß levels, Aß oligomers, and density of neuritic plaques than APP/E2 mice. Furthermore, APP/E4 mice, but not APP/E2 mice, exhibit memory impairment on object recognition and radial arm maze tests. Between the age of 6 and 10 months APP/E2 and APP/E4 mice received treatment with Aß12-28P, a non-toxic, synthetic peptide homologous to the apoE binding motif within the Aß sequence, which competitively blocks the apoE/Aß interaction. In both lines, the treatment significantly reduced brain Aß accumulation, co-accumulation of apoE within Aß plaques, and neuritic degeneration, and prevented memory deficit in APP/E4 mice. These results indicate that both apoE2 and apoE4 isoforms contribute to Aß deposition and future therapies targeting the apoE/Aß interaction could produce favorable outcome in APOE ε2 and ε4 allele carriers.


Assuntos
Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Apolipoproteína E2/metabolismo , Apolipoproteína E4/metabolismo , Encéfalo/metabolismo , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/farmacologia , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/patologia , Modelos Animais de Doenças , Feminino , Humanos , Memória/fisiologia , Camundongos , Camundongos Transgênicos , Placa Amiloide/etiologia , Placa Amiloide/metabolismo
11.
Ann Neurol ; 75(5): 684-99, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24687915

RESUMO

OBJECTIVE: Proteolytic cleavage of the amyloid precursor protein (APP) generates ß-amyloid (Aß) peptides. Prolonged accumulation of Aß in the brain underlies the pathogenesis of Alzheimer disease (AD) and is regarded as a principal target for development of disease-modifying therapeutics. METHODS: Using Chinese hamster ovary (CHO) APP751SW cells, we identified and characterized effects of 2-([pyridine-2-ylmethyl]-amino)-phenol (2-PMAP) on APP steady-state level and Aß production. Outcomes of 2-PMAP treatment on Aß accumulation and associated memory deficit were studied in APPSW /PS1dE9 AD transgenic model mice. RESULTS: In CHO APP751SW cells, 2-PMAP lowered the steady-state APP level and inhibited Aßx-40 and Aßx-42 production in a dose-response manner with a minimum effective concentration ≤ 0.5µM. The inhibitory effect of 2-PMAP on translational efficiency of APP mRNA into protein was directly confirmed using a 35S-methionine/cysteine metabolic labeling technique, whereas APP mRNA level remained unaltered. Administration of 2-PMAP to APPSW /PS1dE9 mice reduced brain levels of full-length APP and its C-terminal fragments and lowered levels of soluble Aßx-40 and Aßx-42 . Four-month chronic treatment of APPSW /PS1dE9 mice revealed no observable toxicity and improved animals' memory performance. 2-PMAP treatment also caused significant reduction in brain Aß deposition determined by both unbiased quantification of Aß plaque load and biochemical analysis of formic acid-extracted Aßx-40 and Aßx-42 levels and the level of oligomeric Aß. INTERPRETATION: We demonstrate the potential of modulating APP steady-state expression level as a safe and effective approach for reducing Aß deposition in AD transgenic model mice.


Assuntos
Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Regulação da Expressão Gênica , Placa Amiloide/prevenção & controle , Precursor de Proteína beta-Amiloide/fisiologia , Animais , Células CHO , Linhagem Celular Tumoral , Cricetinae , Cricetulus , Modelos Animais de Doenças , Feminino , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Placa Amiloide/metabolismo , Placa Amiloide/patologia , Presenilina-1/genética
12.
Cell Metab ; 17(5): 731-44, 2013 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-23602450

RESUMO

Autophagy is a catabolic process that ensures homeostatic cell clearance and is deregulated in a growing number of myopathological conditions. Although FoxO3 was shown to promote the expression of autophagy-related genes in skeletal muscle, the mechanisms triggering autophagy are unclear. We show that TSC1-deficient mice (TSCmKO), characterized by sustained activation of mTORC1, develop a late-onset myopathy related to impaired autophagy. In young TSCmKO mice, constitutive and starvation-induced autophagy is blocked at the induction steps via mTORC1-mediated inhibition of Ulk1, despite FoxO3 activation. Rapamycin is sufficient to restore autophagy in TSCmKO mice and improves the muscle phenotype of old mutant mice. Inversely, abrogation of mTORC1 signaling by depletion of raptor induces autophagy regardless of FoxO inhibition. Thus, mTORC1 is the dominant regulator of autophagy induction in skeletal muscle and ensures a tight coordination of metabolic pathways. These findings may open interesting avenues for therapeutic strategies directed toward autophagy-related muscle diseases.


Assuntos
Autofagia/fisiologia , Complexos Multiproteicos/metabolismo , Músculo Esquelético/metabolismo , Doenças Musculares/fisiopatologia , Serina-Treonina Quinases TOR/metabolismo , Animais , Proteína Forkhead Box O3 , Fatores de Transcrição Forkhead/antagonistas & inibidores , Fatores de Transcrição Forkhead/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina , Camundongos , Doenças Musculares/metabolismo , Inanição/fisiopatologia , Proteína 1 do Complexo Esclerose Tuberosa , Proteínas Supressoras de Tumor/deficiência , Proteínas Supressoras de Tumor/metabolismo
13.
Skelet Muscle ; 3(1): 6, 2013 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-23497627

RESUMO

BACKGROUND: Skeletal muscle mass is determined by the balance between protein synthesis and degradation. Mammalian target of rapamycin complex 1 (mTORC1) is a master regulator of protein translation and has been implicated in the control of muscle mass. Inactivation of mTORC1 by skeletal muscle-specific deletion of its obligatory component raptor results in smaller muscles and a lethal dystrophy. Moreover, raptor-deficient muscles are less oxidative through changes in the expression PGC-1α, a critical determinant of mitochondrial biogenesis. These results suggest that activation of mTORC1 might be beneficial to skeletal muscle by providing resistance to muscle atrophy and increasing oxidative function. Here, we tested this hypothesis by deletion of the mTORC1 inhibitor tuberous sclerosis complex (TSC) in muscle fibers. METHOD: Skeletal muscles of mice with an acute or a permanent deletion of raptor or TSC1 were examined using histological, biochemical and molecular biological methods. Response of the muscles to changes in mechanical load and nerve input was investigated by ablation of synergistic muscles or by denervation . RESULTS: Genetic deletion or knockdown of raptor, causing inactivation of mTORC1, was sufficient to prevent muscle growth and enhance muscle atrophy. Conversely, short-term activation of mTORC1 by knockdown of TSC induced muscle fiber hypertrophy and atrophy-resistance upon denervation, in both fast tibialis anterior (TA) and slow soleus muscles. Surprisingly, however, sustained activation of mTORC1 by genetic deletion of Tsc1 caused muscle atrophy in all but soleus muscles. In contrast, oxidative capacity was increased in all muscles examined. Consistently, TSC1-deficient soleus muscle was atrophy-resistant whereas TA underwent normal atrophy upon denervation. Moreover, upon overloading, plantaris muscle did not display enhanced hypertrophy compared to controls. Biochemical analysis indicated that the atrophy response of muscles was based on the suppressed phosphorylation of PKB/Akt via feedback inhibition by mTORC1 and subsequent increased expression of the E3 ubiquitin ligases MuRF1 and atrogin-1/MAFbx. In contrast, expression of both E3 ligases was not increased in soleus muscle suggesting the presence of compensatory mechanisms in this muscle. CONCLUSIONS: Our study shows that the mTORC1- and the PKB/Akt-FoxO pathways are tightly interconnected and differentially regulated depending on the muscle type. These results indicate that long-term activation of the mTORC1 signaling axis is not a therapeutic option to promote muscle growth because of its strong feedback induction of the E3 ubiquitin ligases involved in protein degradation.

14.
Am J Pathol ; 182(5): 1750-68, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23499462

RESUMO

Accumulation of ß-amyloid (Aß) in the brain is a key event in Alzheimer disease pathogenesis. Apolipoprotein (Apo) E is a lipid carrier protein secreted by astrocytes, which shows inherent affinity for Aß and has been implicated in the receptor-mediated Aß uptake by neurons. To characterize ApoE involvement in the intraneuronal Aß accumulation and to investigate whether blocking the ApoE/Aß interaction could reduce intraneuronal Aß buildup, we used a noncontact neuronal-astrocytic co-culture system, where synthetic Aß peptides were added into the media without or with cotreatment with Aß12-28P, which is a nontoxic peptide antagonist of ApoE/Aß binding. Compared with neurons cultured alone, intraneuronal Aß content was significantly increased in neurons co-cultured with wild-type but not with ApoE knockout (KO) astrocytes. Neurons co-cultured with astrocytes also showed impaired intraneuronal degradation of Aß, increased level of intraneuronal Aß oligomers, and marked down-regulation of several synaptic proteins. Aß12-28P treatment significantly reduced intraneuronal Aß accumulation, including Aß oligomer level, and inhibited loss of synaptic proteins. Furthermore, we showed significantly reduced intraneuronal Aß accumulation in APPSW/PS1dE9/ApoE KO mice compared with APPSW/PS1dE9/ApoE targeted replacement mice that expressed various human ApoE isoforms. Data from our co-culture and in vivo experiments indicate an essential role of ApoE in the mechanism of intraneuronal Aß accumulation and provide evidence that ApoE/Aß binding antagonists can effectively prevent this process.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Apolipoproteínas E/metabolismo , Degeneração Neural/patologia , Neurônios/metabolismo , Neurônios/patologia , Sinapses/patologia , Animais , Astrócitos/patologia , Células Cultivadas , Técnicas de Cocultura , Endocitose , Espaço Extracelular/metabolismo , Feminino , Técnicas de Silenciamento de Genes , Hipocampo/patologia , Humanos , Camundongos , Camundongos Knockout , Degeneração Neural/metabolismo , Ligação Proteica , Isoformas de Proteínas/metabolismo , Frações Subcelulares/metabolismo , Sinapses/metabolismo
15.
Neurochem Int ; 61(7): 976-80, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22841892

RESUMO

Transgenic (Tg) mice overexpressing human amyloid precursor protein (APP) mutants reproduce features of early Alzheimer's disease (AD) including memory deficit, presence of ß-amyloid (Aß) oligomers, and age-associated formation of amyloid deposits. In this study we used hippocampal microdialysis to characterize the signaling of N-methyl-d-aspartic acid receptors (NMDA-Rs) in awake and behaving AD Tg mice. The NMDA-R signaling is central to hippocampal synaptic plasticity underlying memory formation and several lines of evidence implicate the role of Aß oligomers in effecting NMDA-R dysfunction. CA1 NMDA-Rs were stimulated by NMDA infused through reverse microdialysis while changes in the cyclic guanosine monophosphate (cGMP) concentration in the brain interstitial fluid (ISF) were used to determine NMDA-Rs responsiveness. While 4 months old wild type C57BL/6 mice mounted robust cGMP response to the NMDA challenge, the same stimulus failed to significantly change the cGMP level in 4 and 15 months old APP(SW) and 4 months old APP(SW)/PS1(L166P) Tg mice, which were all on C57BL/6 background. Lack of response to NMDA in AD Tg mice occurred in the absence of changes in expression levels of several synaptic proteins including synaptophysin, NR1 NMDA-R subunit and postsynaptic density protein 95, which indicates lack of profound synaptic degeneration. Aß oligomers were detected in all three AD Tg mice groups and their concentration in the hippocampus ranged from 40.5±3.6ng/g in 4 months old APP(SW) mice to 60.8±15.9ng/g in 4 months old APP(SW)/PS1(L166P) mice. Four months old APP(SW) mice had no Aß amyloid plaques, while the other two AD Tg mice groups showed evidence of incipient Aß amyloid plaque formation. Our studies describes a novel approach useful to study the function of NMDA-Rs in awake and behaving AD Tg mice and demonstrate impairment of NMDA-R response in the presence of endogenously formed Aß oligomers but predating onset of Aß amyloidosis.


Assuntos
Doença de Alzheimer/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , GMP Cíclico/metabolismo , Hipocampo/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Transdução de Sinais , Precursor de Proteína beta-Amiloide/genética , Animais , Camundongos , Camundongos Endogâmicos C57BL , Microdiálise , Sinaptofisina/metabolismo
16.
Int J Stem Cells ; 2(1): 76-9, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-24855523

RESUMO

BACKGROUND AND OBJECTIVES: Numerous in vitro observations have been published to show that mature adipocytes may resume proliferation and begin to populate the adipofibroblast fraction or form other cell types. METHODS AND RESULTS: In the present study, we evaluated clonal cultures of mature pig-derived adipocytes as they began to reestablish their ability to divide. The lipid contained within the cytoplasm was either moved to the apical ends of the cell, or large droplets were physically extruded from the cell. In the latter case, we ascertained that the cell lipid droplet was handled in a different manner to that by beef-derived adipocytes as described in other published studies. CONCLUSIONS: Pig-derived adipocytes expel large amounts of lipid directly into the medium environment prior to becoming capable of cell division, rather than retaining all lipids like the beef cells. This difference in lipid handling and trafficking may be a novel mechanism in adipocyte resumption of proliferation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...