Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chempluschem ; 89(7): e202400122, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38578430

RESUMO

Collagen-based aerogels have great potential for topical biomedical applications. Collagen's natural affinity with skin, biodegradability, and gelling behavior are compelling properties to combine with the structural integrity of highly porous matrices in the dry form (aerogels). This work aimed to produce a novel collagen-based aerogel and to perform the material's solid-state and physicochemical characterization. Aerogels were obtained by performing different solvent exchange approaches of a collagen-gelled extract and drying the obtained alcogels with supercritical CO2. The resulting aerogels showed a sponge-like structure with a relatively dense mesoporous network with a specific surface area of 201-203 m2/g, a specific pore volume of 1.08-1.15 cm3/g, and a mean pore radius of ca. 14.7 nm. Physicochemical characterization confirmed that the obtained aerogels are composed of pure collagen, and the aerogel production process does not impact protein tertiary structure. Finally, the material swelling behavior was assessed at various pH values (4, 7, and 10). Collagen aerogels presented a high water uptake capacity up to ~2700 wt. %, pH-dependent stability, and swelling behavior in aqueous media. The results suggest that this collagen aerogel could be a promising scaffold candidate for topical biomedical applications.


Assuntos
Colágeno , Géis , Géis/química , Colágeno/química , Porosidade , Concentração de Íons de Hidrogênio , Animais , Administração Tópica
2.
Gels ; 10(4)2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38667694

RESUMO

Dried porous materials can be found in a wide range of applications. So far, they are mostly prepared from inorganic or indigestible raw materials. The aim of the presented study was to provide a proof of concept for (a) the suitability of mealworm protein gels to be turned into dried porous biomaterials by either a combination of solvent exchange and supercritical drying to obtain aerogels or by lyophilization to obtain lyophilized hydrogels and (b) the suitability of either drying method to retain trace elements such as zinc in the gels throughout the drying process. Hydrogels were prepared from mealworm protein, subsequently dried using either method, and characterized via FT-IR, BET volume, and high-resolution scanning electron microscopy. Retention of zinc was evaluated via energy-dispersive X-ray spectroscopy. Results showed that both drying methods were suitable for obtaining dried porous biomaterials and that the drying method mainly influenced the overall surface area and pore hydrophobicity but not the secondary structure of the proteins in the gels or their zinc content after drying. Therefore, a first proof of concept for utilizing mealworm protein hydrogels as a base for dried porous biomaterials was successful and elucidated the potential of these materials as future sustainable alternatives to more conventional dried porous materials.

3.
Nanoscale Adv ; 5(23): 6635-6646, 2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-38024290

RESUMO

In the present work, a series of metal nanoparticle-decorated carbogels (M-DCs) was synthesized starting from beads of parent metal-crosslinked alginate aerogels (M-CAs). M-CAs contained Ca(ii), Ni(ii), Cu(ii), Pd(ii) and Pt(iv) ions and were converted to M-DCs by pyrolysis under a N2 atmosphere up to pyrolysis temperatures of TP = 600 °C. The textural properties of M-CAs are found to depend on the crosslinking ion, yielding fibrous pore networks with a high specific mesoporous volume and specific surface area SV (SV ∼ 480-687 m2 g-1) for M-CAs crosslinked with hard cations, Ca(ii), Ni(ii) and Cu(ii), and comparably loose networks with increased macroporosity and lower specific surface (SV ∼ 240-270 m2 g-1) for Pd(ii) and Pt(iv) crosslinked aerogels. The pyrolysis of M-CAs resulted in two simultaneously occurring processes: changes in the solid backbone and the growth of metal/metal oxide nanoparticles (NPs). The thermogravimetric analysis (TGA) showed a significant influence of the crosslinking cation on the decomposition mechanism and associated change in textural properties. Scanning electron microscopy-backscattered electron imaging (SEM-BSE) and X-ray diffraction revealed that metal ions (molecularly dispersed in the parent aerogels) formed nanoparticles composed of elementary metals and metal oxides in varying ratios over the course of pyrolytic treatment. Increasing the TP led to generally larger nanoparticles. The pyrolysis of the nickel-crosslinked aerogel (Ni-CA) preserved, to a large extent, the mesoporous structure and resulted in the evolution of fine (∼14 nm) homogeneously dispersed Ni/NiO nanoparticles. Overall, this work presents a green approach for synthesizing metal-nanoparticle containing carbon materials, useful in emerging technologies related to heterogeneous catalysis and electrocatalysis, among others.

4.
Int J Biol Macromol ; 239: 124238, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37003386

RESUMO

Aerogels, especially bio-based ones, present a promising option for wound dressing; specifically, because of their low toxicity, high stability, bio-compatibility, and good biological performance. In this study, agar aerogel was prepared and evaluated as novel wound dressing material in an in vivo rat study. Agar hydrogel was prepared by thermal gelation, after that the water inside the gel was exchanged with ethanol, and finally the alcogel was dried by supercritical CO2. The textural and rheological properties of the prepared aerogel were characterized, showing that the prepared agar aerogels possess high porosity (97-98 %), high surface area (250-330 m2g-1) as well as good mechanical properties and easiness of removal from the wound site. The results of the in vivo experiments macroscopically demonstrate the tissue compatibility of the aerogels in dorsal interscapular injured rat tissue and a shorter wound healing time comparable to that of gauze-treated animals. The histological analysis underpins the reorganisation and healing of the tissue for the injured skin of rats treated with agar aerogel wound dressing within the studied time frame.


Assuntos
Bandagens , Cicatrização , Ratos , Animais , Ágar , Pele , Hidrogéis/farmacologia
5.
Gels ; 8(11)2022 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-36354599

RESUMO

In this work, organic aerogels from spent ground coffee and apple pomace were prepared and characterized for the first time. Apple aerogel was found to be much lighter than that from coffee (0.19 vs. 0.016 g/cm3, whereas the specific surface areas are comparable (229 vs. 208 m2/g). Being intrinsically hydrophilic, these aerogels were silanized, both in liquid and gas phase, to increase stability in aqueous media. The latter modification method allowed chemical grafting of the silane to the aerogel surface (evidenced by FTIR and TGA) and resulted in certain hydrophobicity, as was evidenced via contact angle measurements: both aerogels possess a contact angle of ca. 100° after the gas hydrophobization, while for the pristine aerogels it was 50°. Furthermore, it was observed that the gas-phase silanization process is more applicable to apple aerogels.

6.
J Chem Inf Model ; 62(1): 49-70, 2022 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-34936761

RESUMO

The gelation of biopolymers is of great interest in the material science community and has gained increasing relevance in the past few decades, especially in the context of aerogels─lightweight open nanoporous materials. Understanding the underlying gel structure and influence of process parameters is of great importance to predict material properties such as mechanical strength. In order to improve understanding of the gelation mechanism in aqueous solution, this work presents a novel approach based on the discrete element method for the mesoscale for modeling gelation of hydrogels, similarly to an extremely coarse-grained molecular dynamics (MD) approach. For this, polymer chains are abstracted as dimer units connected by flexible bonds and interactions between units and with the environment, that is, diffusion in implicit water, are described. The model is based on Langevin dynamics and includes an implicit probabilistic ion model to capture the effects of ion availability during ion-mediated gelation. The model components are fully derived and parameterized using literature data and theoretical considerations based on a simplified representation of atomistic processes. The presented model enables investigations of the higher-scale network formation during gelation on the micrometer and millisecond scale, which are beyond classical modeling approaches such as MD. As a model system, calcium-mediated alginate gelation is investigated including the influence of ion concentration, polymer composition, polymer concentration, and molecular weight. The model is verified against numerous literature data as well as own experimental results for the corresponding Ca-alginate hydrogels using nitrogen porosimetry, NMR cryoporometry, and small-angle neutron scattering. The model reproduces both bundle size and pore size distribution in a reasonable agreement with the experiments. Overall, the modeling approach paves the way to physically motivated design of alginate gels.


Assuntos
Alginatos , Polímeros , Alginatos/química , Biopolímeros , Difusão , Géis/química , Polímeros/química
7.
Polymers (Basel) ; 13(23)2021 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-34883569

RESUMO

Protein aerogel particles prepared by supercritical-CO2-drying (SCD) of ground whey protein (WP) hydrogels (20% w/w, pH 5.7) were converted into oleogels by dispersion in selected edible oils (castor, cod liver, corn, flaxseed, MCT, peanut and sunflower oil). The obtained oleogels were analysed for oil content, microstructure, rheological properties, and ATR-FTIR spectra. Except for castor oil, solid-like, plastic materials with comparable composition (80% oil, 20% WP) and rheological properties (G'~3.5 × 105 Pa, G″~0.20 × 105 Pa, critical stress~800 Pa, tanδ~0.060) were obtained. Optical and confocal microscopy showed that the generated structure was associated with the capillary-driven absorption of oil into the porous aerogel particles interconnected via particle-particle interactions. In this structure, the oil was stably entrapped. Results evidenced the reduced role of edible oil characteristics with the exception of castor oil, whose high polarity probably favoured particle-oil interactions hindering particle networking. This work demonstrates that WP aerogels could be regarded as versatile oleogel templates allowing the structuring of many edible oils into solid-like materials.

8.
Polymers (Basel) ; 13(17)2021 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-34503040

RESUMO

The aim of this work was to evaluate the potential of cold plasma polymerization as a simple, fast and versatile technique for deposition of protective hydrophobic and oleophobic polymer layers on hydrophilic biopolymer aerogels. Polymerization of different fluorinated monomers (octafluorocyclobutane C4F8 and perfluoro-acrylates PFAC-6 and PFAC-8) on aerogel monoliths derived from alginate, cellulose, whey protein isolate (WPI) and potato protein isolate (PPI) resulted in fast and significant surface hydrophobization after short process times of 5 min and led to superhydrophobic surfaces with static water contact angles up to 154° after application of poly-C4F8 coatings. Simultaneous introduction of hydro- and oleophobicity was possible by deposition of perfluoro-acrylates. While the porous structure of aerogels stayed intact during the process, polymerization inside the aerogels pores led to the generation of new porous moieties and resulted therefore in significant increase in the specific surface area. The magnitude of the effect depended on the individual process settings and on the overall porosity of the substrates. A maximization of specific surface area increase (+179 m2/g) was obtained by applying a pulsed wave mode in the C4F8-coating of alginate aerogels.

9.
Mater Sci Eng C Mater Biol Appl ; 127: 112196, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34225849

RESUMO

Textile engineering can offer a multi-scale toolbox via various fiber or textile fabrication methods to obtain woven or nonwoven aerogels with different structural and mechanical properties to overcome the current limitations of polysaccharide-based aerogels, such as poor mechanical properties and undeveloped shaping techniques. Hereby, a high viscous solution of microcrystalline cellulose and zinc chloride hydrate was wet spun to produce mono and multi-filament alcogel microfibers. Subsequently, cellulose aerogel fibers (CAF) were produced and impregnated with model drugs using supercritical CO2 processes. Fibers were characterized in terms of morphology and textural properties, thermal stability, mechanical properties, and in vitro biological and drug release assessments. Loaded and non-loaded CAFs proved to have a macro-porous outer shell and a nano-porous inner core with interconnected pore structure and a specific area in the range of 100-180 m2/g. The CAFs with larger diameter (d ~ 235 µm) were able to form knitted mesh while lower diameter fibers (d ~ 70 µm) formed needle punched nonwoven textiles. Humidity and water uptake assessments indicated that the fibrous structures were highly moisture absorbable and non-toxic with immediate drug release profiles due to the highly open interconnected porous structure of the fibers. Finally, CAFs are propitious to be further developed for biomedical applications such as drug delivery and wound care.


Assuntos
Celulose , Sistemas de Liberação de Medicamentos , Liberação Controlada de Fármacos , Géis , Porosidade
10.
Molecules ; 26(6)2021 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-33806853

RESUMO

The characterization of terpene-based eutectic solvent systems is performed to describe their solid-liquid phase transitions. Physical properties are measured experimentally and compared to computed correlations for deep eutectic solvents (DES) and the percentage relative error er for the density, surface tension, and refractive index is obtained. The thermodynamic parameters, including the degradation, glass transition and crystallization temperatures, are measured using DSC and TGA. Based on these data, the solid-liquid equilibrium phase diagrams are calculated for the ideal case and predictions are made using the semi-predictive UNIFAC and the predictive COSMO RS models, the latter with two different parametrization levels. For each system, the ideal, experimental, and predicted eutectic points are obtained. The deviation from ideality is observed experimentally and using the thermodynamic models for Thymol:Borneol and Thymol:Camphor. In contrast, a negative deviation is observed only experimentally for Menthol:Borneol and Menthol:Camphor. Moreover, the chemical interactions are analyzed using FTIR and 1H-NMR to study the intermolecular hydrogen bonding in the systems.

11.
PLoS One ; 16(4): e0247633, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33909615

RESUMO

The present study evaluates the effect of calcium alginate aerogel as a potential drug carrier, on the liver and kidney functions, and on the gut microbiota of Wistar rats. The studied alginate aerogel was prepared in the form of nanoparticles using the jet cutting technique, and they were characterized in terms of specific surface areas, outer morphology and particle size distribution. For the in vivo study, calcium alginate aerogel was administered orally, and liver and kidney functions were tested for one week and for four weeks in two distinct studies. During the short-term in vivo study, feces samples were collected for bacterial DNA extraction followed by 16S rRNA gene sequencing analyses to detect changes in gut microbiota. Results showed that the prepared alginate aerogel has an average BET-specific surface area of around 540 m2/g, with a pore volume of 7.4 cc/g, and pore width of 30-50 nm. The in vivo study revealed that the levels of the studied kidney and liver enzymes didn't exceed the highest level of the normal range. The study of gut microbiota showed different patterns; certain groups of bacteria, such as Clostridia and Bacteriodia, increased during the aerogels regime and continued to increase after the aerogel was stopped. While other groups such as Erysipelotrichia, and Candidatus saccharibacteria increased during aerogels treatment, and then decreased again after one month. Members of the Bacilli class showed a unique trend, that is, after being the most abundant group (63%) at time 0, their relative abundance decreased dramatically until it reached < 5%; which was the case even after stopping the aerogel treatment.


Assuntos
Alginatos/farmacologia , Bactérias , Microbioma Gastrointestinal/efeitos dos fármacos , Rim/metabolismo , Fígado/metabolismo , Administração Oral , Animais , Bactérias/classificação , Bactérias/genética , Bactérias/crescimento & desenvolvimento , Avaliação Pré-Clínica de Medicamentos , Ratos , Ratos Wistar
12.
Polymers (Basel) ; 13(4)2021 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-33669181

RESUMO

The imaging of non-conducting materials by scanning electron microscopy (SEM) is most often performed after depositing few nanometers thick conductive layers on the samples. It is shown in this work, that even a 5 nm thick sputtered gold layer can dramatically alter the morphology and the surface structure of many different types of aerogels. Silica, polyimide, polyamide, calcium-alginate and cellulose aerogels were imaged in their pristine forms and after gold sputtering utilizing low voltage scanning electron microscopy (LVSEM) in order to reduce charging effects. The morphological features seen in the SEM images of the pristine samples are in excellent agreement with the structural parameters of the aerogels measured by nitrogen adsorption-desorption porosimetry. In contrast, the morphologies of the sputter coated samples are significantly distorted and feature nanostructured gold. These findings point out that extra care should be taken in order to ensure that gold sputtering does not cause morphological artifacts. Otherwise, the application of low voltage scanning electron microscopy even yields high resolution images of pristine non-conducting aerogels.

13.
Pharm Dev Technol ; 26(5): 509-521, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33593203

RESUMO

In this study, the aerogel technology was used to prepare pulmonary drug carriers consisting of alginate and alginate-hyaluronic acid by an emulsion gelation technique and supercritical CO2 drying. During the preparation process, the emulsification rate and inner phase viscosity were varied to control the diameter of aerogel microspheres. Results showed that the aerogel microspheres were highly porous (porosity > 98%) with low densities in the range between 0.0087 and 0.0634 g/cm3 as well as high surface areas between 354 and 759 m2/g. The obtained microspheres showed aerodynamic diameter below 5 µm making them suitable for pulmonary drug delivery. An in vitro drug release study with the model drug sodium naproxen was conducted and a non-Fickian drug release mechanism was observed, with no significant difference between the release profiles of alginate and alginate-hyaluronic acid microspheres. During the emulsion gelation step, the feasibility of using the capillary number to estimate the largest stable droplet size in the emulsions was also studied and it was found that using this number, the droplet size in the emulsions may well be predicted.


Assuntos
Alginatos/química , Sistemas de Liberação de Medicamentos , Ácido Hialurônico/química , Naproxeno/administração & dosagem , Química Farmacêutica , Portadores de Fármacos/química , Liberação Controlada de Fármacos , Emulsões , Géis , Pulmão/metabolismo , Microesferas , Naproxeno/farmacocinética , Tamanho da Partícula , Porosidade , Tecnologia Farmacêutica , Distribuição Tecidual , Viscosidade
14.
ACS Appl Mater Interfaces ; 13(2): 2997-3010, 2021 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-33401895

RESUMO

The most relevant properties of polysaccharide aerogels in practical applications are determined by their microstructures. Hydration has a dominant role in altering the microstructures of these hydrophilic porous materials. To understand the hydration induced structural changes of monolithic Ca-alginate aerogel, produced by drying fully cross-linked gels with supercritical CO2, the aerogel was gradually hydrated and characterized at different states of hydration by small-angle neutron scattering (SANS), liquid-state nuclear magnetic resonance (NMR) spectroscopy, and magic angle spinning (MAS) NMR spectroscopy. First, the incorporation of structural water and the formation of an extensive hydration sphere mobilize the Ca-alginate macromolecules and induce the rearrangement of the dry-state tertiary and quaternary structures. The primary fibrils of the original aerogel backbone form hydrated fibers and fascicles, resulting in the significant increase of pore size, the smoothing of the nanostructured surface, and the increase of the fractal dimension of the matrix. Because of the formation of these new superstructures in the hydrated backbone, the stiffness and the compressive strength of the aerogel significantly increase compared to its dry-state properties. Further elevation of the water content of the aerogel results in a critical hydration state. The Ca-alginate fibers of the backbone disintegrate into well-hydrated chains, which eventually form a quasi-homogeneous hydrogel-like network. Consequently, the porous structure collapses and the well-defined solid backbone ceases to exist. Even in this hydrogel-like state, the macroscopic integrity of the Ca-alginate monolith is intact. The postulated mechanism accounts for the modification of the macroscopic properties of Ca-alginate aerogel in relation to both humid and aqueous environments.

15.
Gels ; 6(4)2020 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-33255687

RESUMO

Different numerical solutions of a previously developed mass transport model for supercritical drying of aerogel particles in a packed bed [Part 1: Selmer et al. 2018, Part 2: Selmer et al. 2019] are compared. Two finite difference discretizations and a finite volume method were used. The finite volume method showed a higher overall accuracy, in the form of lower overall Euclidean norm (l2 ) and maximum norm (l∞ ) errors, as well as lower mole balance errors compared to the finite difference methods. Additionally, the finite volume method was more efficient when the condition numbers of the linear systems to be solved were considered. In case of fine grids, the computation time of the finite difference methods was slightly faster but for 16 or fewer nodes the finite volume method was superior. Overall, the finite volume method is preferable for the numerical solution of the described drying model for aerogel particles in a packed bed.

16.
Polymers (Basel) ; 12(11)2020 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-33218195

RESUMO

Chronic non-healing wounds represent a substantial economic burden to healthcare systems and cause a considerable reduction in quality of life for those affected. Approximately 0.5-2% of the population in developed countries are projected to experience a chronic wound in their lifetime, necessitating further developments in the area of wound care materials. The use of aerogels for wound healing applications has increased due to their high exudate absorbency and ability to incorporate therapeutic substances, amongst them trace metals, to promote wound-healing. This study evaluates the swelling behavior of Ca-Zn-Ag-loaded alginate aerogels and their metal release upon incubation in human sweat or wound fluid substitutes. All aerogels show excellent liquid uptake from any of the formulas and high liquid holding capacities. Calcium is only marginally released into the swelling solvents, thus remaining as alginate bridging component aiding the absorption and fast transfer of liquids into the aerogel network. The zinc transfer quota is similar to those observed for common wound dressings in human and animal injury models. With respect to the immune regulatory function of zinc, cell culture studies show a high availability and anti-inflammatory activity of aerogel released Zn-species in RAW 264.7 macrophages. For silver, the balance between antibacterial effectiveness versus cytotoxicity remains a significant challenge for which the alginate aerogels need to be improved in the future. An increased knowledge of the transformations that alginate aerogels undergo in the course of the fabrication as well as during wound fluid exposure is necessary when aiming to create advanced, tissue-compatible aerogel products.

17.
Gels ; 6(3)2020 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-32916912

RESUMO

This work presents two novel methods to investigate in situ the carbon dioxide (CO2)-induced gelation of biopolymer-based solutions. The CO2-induced gelation is performed in a viewing cell at room temperature under CO2 pressure (20 to 60 bar), whereby calcium precursors are used as cross-linkers. The novel methods allow the in situ optical observation and evaluation of the gelation process via the change in turbidity due to dissolution of dispersed calcium carbonate (CaCO3) particles and in situ pH measurements. The combination of both methods enables the determination of the gelation direction, gelation rate, and the pH value in spatial and temporal resolution. The optical gelation front and pH front both propagate equally from top to bottom through the sample solutions, indicating a direct link between a decrease in the pH value and the dissolution of the CaCO3 particles. Close-to-vertical movement of both gelation front and pH front suggests almost one dimensional diffusion of CO2 from the contact surface (gel-CO2) to the bottom of the sample. The gelation rate increases with the increase in CO2 pressure. However, the increase in solution viscosity and the formation of a gel layer result in a strong decrease in the gelation rate due to a hindrance of CO2 diffusion. Released carbonate ions from CaCO3 dissolution directly influence the reaction equilibrium between CO2 and water and therefore the change in pH value of the solution. Increasing the CaCO3 concentrations up to the solubility results in lower gelation rates.

18.
Gels ; 6(3)2020 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-32961804

RESUMO

In this work, the ability of several solvents to induce gel formation from amylomaize starch solubilized in dimethyl sulfoxide (DMSO) was investigated. The formed gels were subjected to solvent exchange using ethanol and dried with supercritical carbon dioxide (sc-CO2) to obtain the aerogels. The influence of starch concentration (3-15 wt%) and solvent content (20-80 wt%) on gel formation was also studied. It was demonstrated that the gelation of starch in binary mixtures of solvents can be rationalized by Hansen Solubility Parameters (HSP) revealing a crucial hole of hydrogen bonding for the gel's strength, which is in agreement with rheological measurements. Only the addition of water or propylene glycol to starch/DMSO solutions resulted in strong gels at a minimum starch and solvent content of 7.5 wt% and 50 wt%, respectively. The resulting aerogels showed comparably high specific surface areas (78-144 m2 g-1) and low envelope densities (0.097-0.203 g cm-3). The results of this work indicate that the HSP parameters could be used as a tool to guide the rational selection of water-free gelation in starch/DMSO systems. In addition, it opens up an attractive opportunity to perform starch gelation in those solvents that are miscible with sc-CO2, avoiding the time-consuming step of solvent exchange.

19.
Polymers (Basel) ; 12(2)2020 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-32013071

RESUMO

Biopolymer-based aerogels can be obtained by supercritical drying of wet gels and endowed with outstanding properties for biomedical applications. Namely, polysaccharide-based aerogels in the form of microparticles are of special interest for wound treatment and can also be loaded with bioactive agents to improve the healing process. However, the production of the precursor gel may be limited by the viscosity of the polysaccharide initial solution. The jet cutting technique is regarded as a suitable processing technique to overcome this problem. In this work, the technological combination of jet cutting and supercritical drying of gels was assessed to produce chitosan aerogel microparticles loaded with vancomycin HCl (antimicrobial agent) for wound healing purposes. The resulting aerogel formulation was evaluated in terms of morphology, textural properties, drug loading, and release profile. Aerogels were also tested for wound application in terms of exudate sorption capacity, antimicrobial activity, hemocompatibility, and cytocompatibility. Overall, the microparticles had excellent textural properties, absorbed high amounts of exudate, and controlled the release of vancomycin HCl, providing sustained antimicrobial activity.

20.
Int J Biol Macromol ; 155: 1060-1068, 2020 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-31712155

RESUMO

Passion fruit bagasse extract (PFBE) is a rich source of polyphenols, including piceatannol. This work produced alginate (1, 2, 3 wt%) aerogel and investigated the impregnation of gallic acid (GA) and PFBE in alginate aerogel microparticles. The microparticles of ca. 100 µm in diameter were obtained by emulsion-gelation method, submitted to solvent exchange, wet impregnation (WI) and supercritical drying. Alginate aerogels derived from 1 wt% solution led to a higher GA loading and, therefore, this formulation was used to impregnate PFBE. The loading of PFBE, total phenolic, and piceatannol contents based on grams of raw aerogel were 0.62 g, 10.77 mg, and 741.85 µg, respectively, which means a loading efficiency of total phenolics and piceatannol of 47.1% and 34.7%. DSC analysis and X-ray diffraction showed that particles behave as amorphous materials and ORAC assay revealed that impregnated aerogel microparticles presented antioxidant capacity. Alginate aerogel microparticles presented as an appropriated material for drug loading, whereas WI and supercritical drying demonstrated to be useful techniques to load PBBE in aerogels.


Assuntos
Alginatos/química , Celulose/química , Portadores de Fármacos/química , Géis/química , Passiflora/química , Extratos Vegetais/química , Celulose/isolamento & purificação , Dessecação , Microesferas , Porosidade , Solubilidade , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...