Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
J Alzheimers Dis ; 99(3): 927-939, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38728191

RESUMO

Background: Autophagy and apoptosis are cellular processes that maintain cellular homeostasis and remove damaged or aged organelles or aggregated and misfolded proteins. Stress factors initiate the signaling pathways common to autophagy and apoptosis. An imbalance in the autophagy and apoptosis, led by cascade of molecular mechanism prior to both processes culminate into neurodegeneration. Objective: In present study, we urge to investigate the codon usage pattern of genes which are common before initiating autophagy and apoptosis. Methods: In the present study, we took up eleven genes (DAPK1, BECN1, PIK3C3 (VPS34), BCL2, MAPK8, BNIP3 L (NIX), PMAIP1, BAD, BID, BBC3, MCL1) that are part of molecular signaling mechanism prior to autophagy and apoptosis. We analyzed dinucleotide odds ratio, codon bias, usage, context, and rare codon analysis. Results: CpC and GpG dinucleotides were abundant, with the dominance of G/C ending codons as preferred codons. Clustering analysis revealed that MAPK8 had a distinct codon usage pattern compared to other envisaged genes. Both positive and negative contexts were observed, and GAG-GAG followed by CTG-GCC was the most abundant codon pair. Of the six synonymous arginine codons, two codons CGT and CGA were the rarest. Conclusions: The information presented in the study may be used to manipulate the process of autophagy and apoptosis and to check the pathophysiology associated with their dysregulation.


Assuntos
Apoptose , Autofagia , Doenças Neurodegenerativas , Autofagia/genética , Humanos , Apoptose/genética , Doenças Neurodegenerativas/genética , Uso do Códon/genética , Simulação por Computador , Códon/genética
2.
Ann Med Surg (Lond) ; 86(3): 1416-1425, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38463054

RESUMO

Mitochondrial dysfunction is the leading cause of neurodegenerative disorders like Alzheimer's disease and Parkinson's disease. Mitochondria is a highly dynamic organelle continuously undergoing the process of fission and fusion for even distribution of components and maintaining proper shape, number, and bioenergetic functionality. A set of genes governs the process of fission and fusion. OPA1, Mfn1, and Mfn2 govern fusion, while Drp1, Fis1, MIEF1, and MIEF2 genes control fission. Determination of specific molecular patterns of transcripts of these genes revealed the impact of compositional constraints on selecting optimal codons. AGA and CCA codons were over-represented, and CCC, GTC, TTC, GGG, ACG were under-represented in the fusion gene set. In contrast, CTG was over-represented, and GCG, CCG, and TCG were under-represented in the fission gene set. Hydropathicity analysis revealed non-polar protein products of both fission and fusion gene set transcripts. AGA codon repeats are an integral part of translational regulation machinery and present a distinct pattern of over-representation and under-representation in different transcripts within the gene sets, suggestive of selective translational force precisely controlling the occurrence of the codon. Out of six synonymous codons, five synonymous codons encoding for leucine were used differently in both gene sets. Hence, forces regulating the occurrence of AGA and five synonymous leucine-encoding codons suggest translational selection. A correlation of mutational bias with gene expression and codon bias and GRAVY and AROMA signifies the selection pressure in both gene sets, while the correlation of compositional bias with gene expression, codon bias, protein properties, and minimum free energy signifies the presence of compositional constraints. More than 25% of codons of both gene sets showed a significant difference in codon usage. The overall analysis shed light on molecular features of gene sets involved in fission and fusion.

3.
Ann Med Surg (Lond) ; 86(3): 1359-1369, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38463112

RESUMO

Haem oxygenase-1 (HO-1) is a ubiquitously expressed gene involved in cellular homoeostasis, and its imbalance in expression results in various disorders. To alleviate such disorders, HO-1 gene expression needs to be modulated. Codon usage bias results from evolutionary forces acting on any nucleotide sequence and determines the gene expression. Like codon usage bias, codon pair bias also exists, playing a role in gene expression. In the present study, HO-1 gene was recoded by manipulating codon and codon pair bias, and four such constructs were made through codon/codon pair deoptimization and codon/codon pair optimization to reduce and enhance the HO-1 gene expression. Codon usage analysis was done for these constructs for four tissues brain, heart, pancreas and liver. Based on codon usage in different tissues, gene expression of these tissues was determined in terms of the codon adaptation index. Based on the codon adaptation index, minimum free energy, and translation efficiency, constructs were evaluated for enhanced or decreased HO-1 expression. The analysis revealed that for enhancing gene expression, codon pair optimization, while for reducing gene expression, codon deoptimization is efficacious. The recoded constructs developed in the study could be used in gene therapy regimens to cure HO-1 over or underexpression-associated disorders.

4.
Sci Rep ; 14(1): 3502, 2024 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-38346990

RESUMO

Depression negatively impacts mood, behavior, and mental and physical health. It is the third leading cause of suicides worldwide and leads to decreased quality of life. We examined 18 genes available at the genetic testing registry (GTR) from the National Center for Biotechnological Information to investigate molecular patterns present in depression-associated genes. Different genotypes and differential expression of the genes are responsible for ensuing depression. The present study, investigated codon pattern analysis, which might play imperative roles in modulating gene expression of depression-associated genes. Of the 18 genes, seven and two genes tended to up- and down-regulate, respectively, and, for the remaining genes, different genotypes, an outcome of SNPs were responsible alone or in combination with differential expression for different conditions associated with depression. Codon context analysis revealed the abundance of identical GTG-GTG and CTG-CTG pairs, and the rarity of methionine-initiated codon pairs. Information based on codon usage, preferred codons, rare, and codon context might be used in constructing a deliverable synthetic construct to correct the gene expression level of the human body, which is altered in the depressive state. Other molecular signatures also revealed the role of evolutionary forces in shaping codon usage.


Assuntos
Uso do Códon , Suicídio , Humanos , Depressão/genética , Qualidade de Vida , Códon/genética
5.
J Alzheimers Dis ; 97(3): 1111-1123, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38306057

RESUMO

BACKGROUND: Herpes simplex virus type 1 (HSV-1) is associated with Alzheimer's disease, which goes into a cycle of latency and reactivation. The present study was envisaged to understand the reasons for latency and specific molecular patterns present in the HSV-1. OBJECTIVE: The objective is the molecular dissection of Herpes simplex virus type 1 to elucidate molecular mechanisms behind latency and compare its codon usage patterns with genes modulated during Alzheimer's disease as a part of host-pathogen interaction. METHODS: In the present study, we tried to investigate the potential reasons for the latency of HSV-1 virus bioinformatically by determining the CpG patterns. Also, we investigated the codon usage pattern, the presence of rare codons, codon context, and protein properties. RESULTS: The top 222 codon pairs graded based on their frequency in the HSV-1 genome revealed that with only one exception (CUG-UUU), all other codon pairs have codons ending with G/C. Considering it an extension of host-pathogen interaction, we compared HSV-1 codon usage with that of codon usage of genes modulated during Alzheimer's disease, and we found that CGT and TTT are only two codons that exhibited similar codon usage patterns and other codons showed statistically highly significant different codon preferences. Dinucleotide CpG tends to mutate to TpG, suggesting the presence of mutational forces and the imperative role of CpG methylation in HSV-1 latency. CONCLUSIONS: Upon comparison of codon usage between HSV-1 and Alzheimer's disease genes, no similarities in codon usage were found as a part of host-pathogen interaction. CpG methylation plays an imperative role in latency HSV-1.


Assuntos
Doença de Alzheimer , Herpes Simples , Herpesvirus Humano 1 , Humanos , Herpesvirus Humano 1/genética , Uso do Códon , Doença de Alzheimer/genética , Interações Hospedeiro-Patógeno/genética , Herpes Simples/metabolismo
6.
Front Mol Neurosci ; 16: 1200523, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37383425

RESUMO

Introduction: Neurodegeneration and cancer present in comorbidities with inverse effects due to the expression of genes and pathways acting in opposition. Identifying and studying the genes simultaneously up or downregulated during morbidities helps curb both ailments together. Methods: This study examines four genes. Three of these (Amyloid Beta Precursor Protein (APP), Cyclin D1 (CCND1), and Cyclin E2 (CCNE2) are upregulated, and one protein phosphatase 2 phosphatase activator (PTPA) is simultaneously downregulated in both disorders. We investigated molecular patterns, codon usage, codon usage bias, nucleotide bias in the third codon position, preferred codons, preferred codon pairs, rare codons, and codon context. Results: Parity analysis revealed that T is preferred over A, and G is preferred over C in the third codon position, suggesting composition plays no role in nucleotide bias in both the upregulated and downregulated gene sets and that mutational forces are stronger in upregulated gene sets than in downregulated ones. Transcript length influenced the overall %A composition and codon bias, and the codon AGG exerted the strongest influence on codon usage in both the upregulated and downregulated gene sets. Codons ending in G/C were preferred for 16 amino acids, and glutamic acid-, aspartic acid-, leucine-, valine-, and phenylalanine-initiated codon pairs were preferred in all genes. Codons CTA (Leu), GTA (Val), CAA (Gln), and CGT (Arg) were underrepresented in all examined genes. Discussion: Using advanced gene editing tools such as CRISPR/Cas or any other gene augmentation technique, these recoded genes may be introduced into the human body to optimize gene expression levels to augment neurodegeneration and cancer therapeutic regimens simultaneously.

7.
Pathogens ; 12(2)2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36839597

RESUMO

Hepatitis C virus (HCV) is enveloped RNA virus, encoding for a polyprotein that is processed by cellular proteases. The virus is responsible for liver cirrhosis, allograft rejection, and human hepatocellular carcinoma. Based on studies including compositional analysis, odds ratio analysis, parity analysis, skew analysis, relative synonymous codon usage, codon bias, and protein properties, it was evident that codon usage bias in HCV is dependent upon the nucleotide composition. Codon context analysis revealed CTC-CTG as a preferred codon pair. While CGA and CGT codons were rare, none of the codons were rare in HCV-like viruses envisaged in the present study. Many of the preferred codon pairs were valine amino acid-initiated, which possibly infers viral infectivity; hence the role of selection forces appears to act on the HCV genome, which was further validated by neutrality analysis where selection accounted for 87.28%, while mutation accounted for 12.72% force shaping codon usage. Furthermore, codon usage was correlated with the length of the genome. HCV viruses prefer valine-initiated codon pairs, while HCV-like viruses prefer alanine-initiated codon pairs. The HCV host range is very narrow and is confined to only humans and chimpanzees. Based on indices including codon usage correlation analysis, similarity index, and relative codon deoptimization index, it is evident in the study that the chimpanzee is the primary host of the virus. The present study helped elucidate the preferred host for HCV. The information presented in the study paved the way for generating an attenuated vaccine candidate through viral recoding, with finely tuned nucleotide composition and a perfect balance of preferred and rare codons.

8.
Vaccines (Basel) ; 11(2)2023 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-36851364

RESUMO

The SARS-CoV-2 delta variant (B.1.617.2) appeared for the first time in December 2020 and later spread worldwide. Currently available vaccines are not so efficacious in curbing the viral pathogenesis of the delta strain of COVID; therefore, the development of a safe and effective vaccine is required. In the present study, we envisaged molecular patterns in the structural genes' spike, nucleoprotein, membrane, and envelope of the SARS-CoV-2 delta variant. The study was based on determining compositional features, dinucleotide odds ratio, synonymous codon usage, positive and negative codon contexts, rare codons, and insight into relatedness between the human host isoacceptor tRNA and preferred codons from the structural genes. We found specific patterns, including a significant abundance of T nucleotide over all other three nucleotides. The underrepresentation of GpA, GpG, CpC, and CpG dinucleotides and the overrepresentation of TpT, ApA, CpT, and TpG were observed. A preference towards ACT- (Thr), AAT- (Asn), TTT- (Phe), and TTG- (Leu) initiated codons and aversion towards CGG (Arg), CCG (Pro), and CAC (His) was present in the structural genes of the delta strain. The interaction between the host tRNA pool and preferred codons of the envisaged structural genes revealed that the virus preferred the codons for those suboptimal numbers of isoacceptor tRNA were present. We see this as a strategy adapted by the virus to keep the translation rate low to facilitate the correct folding of viral proteins. The information generated in the study helps design the attenuated vaccine candidate against the SARS-CoV-2 delta variant using a synthetic biology approach. Three strategies were tested: changing TpT to TpA, introducing rare codons, and disrupting favored codons. It found that disrupting favored codons is a better approach to reducing virus fitness and attenuating SARS-CoV-2 delta strain using structural genes.

9.
Vaccines (Basel) ; 10(11)2022 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-36366382

RESUMO

The overexpression of SARS-CoV-2 primary receptors and co-receptors (ACE2, TMPRSS2, FURIN, and CD147) enhance the likeliness of SARS-CoV-2 infection. The genes for same receptors are overexpressed in the periodontal tissues of periodontitis patients. On the other hand, BMAL1 is recognized to play a crucial role in regulating pulmonary inflammation and enhancing susceptibility to viral infection. Silenced BMAL1 disrupts circadian transcriptional regulations, enhances vulnerability to SARS-CoV-2 infections, and may trigger the further production of TNF-α and other pro-inflammatory cytokines that propagate the cytokine storm and exacerbate periodontal inflammation. Therefore ACE2, TMPRSS2, FURIN, CD147, and BMAL1 are the crossroads between SARS-CoV-2 and Periodontitis genes. The enhanced expression of ACE2, TMPRSS2, FURIN, and CD147 and the diminished expression of BMAL1 may be a strategy to check both ailments simultaneously. In gene manipulation techniques, oligos are introduced, which contain all the necessary information to manipulate gene expression. The data are derived from the studies on genes' molecular patterns, including nucleotide composition, dinucleotide patterns, relative synonymous codon usage, codon usage bias, codon context, and rare and abundant codons. Such information may be used to manipulate the overexpression and underexpression of the genes at the time of SARS-CoV-2 infection and periodontitis to mitigate both ailments simultaneously; it can be explored to uncover possible future treatments.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...