Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Contam Hydrol ; 206: 10-17, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28965709

RESUMO

Laboratory batch experiments were performed to assess the impacts of temperature and mineralogy on the abiotic dechlorination of tetrachloroethene (PCE) or trichloroethene (TCE) due to the presence of ferrous minerals in natural aquifer clayey soils under anaerobic conditions. A combination of x-ray diffraction (XRD), magnetic susceptibility, and ferrous mineral content were used to characterize each of the 3 natural soils tested in this study, and dechlorination at temperatures ranging from 20 to 55°C were examined. Results showed that abiotic dechlorination occurred in all 3 soils examined, yielding reduced gas abiotic dechlorination products acetylene, butane, ethene, and/or propane. Bulk first-order dechlorination rate constants (kbulk), scaled to the soil:water ratio expected for in situ conditions, ranged from 2.0×10-5day-1 at 20°C, to 32×10-5day-1 at 55°C in the soil with the greatest ferrous mineral content. For the generation of acetylene and ethene from PCE, the reaction was well described by Arrhenius kinetics, with an activation energy of 91kJ/mol. For the generation of coupling products butane and propane, the Arrhenius equation did not provide a satisfactory description of the data, likely owing to the complex reaction mechanisms associated with these products and/or diffusional mass transfer processes associated with the ferrous minerals likely responsible for these coupling reactions. Although the data set was too limited to determine a definitive correlation, the two soils with elevated ferrous mineral contents had elevated abiotic dechlorination rate constants, while the one soil with a low ferrous mineral content had a relatively low abiotic dechlorination rate constant. Overall, results suggest intrinsic abiotic dechlorination rates may be an important long-term natural attenuation component in site conceptual models for clays that have the appropriate iron mineralogy.


Assuntos
Silicatos de Alumínio/química , Solo/química , Tetracloroetileno/química , Tricloroetileno/química , Poluentes Químicos da Água/química , Argila , Difusão , Água Subterrânea/química , Halogenação , Ferro , Cinética , Temperatura , Difração de Raios X
2.
J Environ Manage ; 184(Pt 1): 57-66, 2016 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-27497675

RESUMO

As the environmental remediation industry matures, remaining sites often have significant underlying technical challenges and financial constraints. More often than not, significant remediation efforts at these "complex" sites have not achieved stringent, promulgated cleanup goals. Decisions then have to be made about whether and how to commit additional resources towards achieving those goals, which are often not achievable nor required to protect receptors. Guidance on cleanup approaches focused on evaluating and managing site-specific conditions and risks, rather than uniformly meeting contaminant cleanup criteria in all media, is available to aid in this decision. Although these risk-based cleanup approaches, such as alternative endpoints and adaptive management strategies, have been developed, they are under-utilized due to environmental, socio-economic, and risk perception barriers. Also, these approaches are usually implemented late in the project life cycle after unsuccessful remedial attempts to achieve stringent cleanup criteria. In this article, we address these barriers by developing an early decision framework to identify if site characteristics support sustainable risk management, and develop performance metrics and tools to evaluate and implement successful risk-based cleanup approaches. In addition, we address uncertainty and risk perception challenges by aligning risk-based cleanup approaches with the concepts of risk management and sustainable remediation. This approach was developed in the context of lessons learned from implementing remediation at complex sites, but as a framework can, and should, be applied to all sites undergoing remediation.


Assuntos
Recuperação e Remediação Ambiental/métodos , Medição de Risco/métodos , Gestão de Riscos/métodos , Meio Ambiente , Humanos , Fatores Socioeconômicos , Incerteza , Estados Unidos
3.
Sci Total Environ ; 438: 541-8, 2012 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-23041295

RESUMO

Stream flow augmentation with recycled water has the potential to improve stream habitat and increase potable water supply, but the practice is not yet well understood or documented. The objectives of this report are to present a short review illustrated by a case study, followed by recommendations for future stream flow augmentation projects. Despite the fact that wastewater discharge to streams is commonplace, a water agency pursuing stream flow augmentation with recycled water will face unique challenges. For example, recycled water typically contains trace amounts of organic wastewater-derived compounds (OWCs) for which the potential ecological risks must be balanced against the benefits of an augmentation project. Successful stream flow augmentation with recycled water requires that the lead agency clearly articulate a strong project rationale and identify key benefits. It must be assumed that the public will have some concerns about water quality. Public acceptance may be better if an augmentation project has co-benefits beyond maintaining stream ecosystems, such as improving water system supply and reliability (i.e. potable use offset). Regulatory or project-specific criteria (acceptable concentrations of priority OWCs) would enable assessment of ecosystem impacts and demonstration of practitioner compliance. Additional treatment (natural or engineered) of the recycled water may be considered. If it is not deemed necessary or feasible, existing recycled water quality may be adequate to achieve project goals depending on project rationale, site and water quality evaluation, and public acceptance.


Assuntos
Conservação dos Recursos Naturais/métodos , Reciclagem/métodos , Rios , Águas Residuárias/análise , Movimentos da Água , Poluentes Químicos da Água/análise , California , Conservação dos Recursos Naturais/legislação & jurisprudência , Compostos Orgânicos/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...