Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biochim Biophys Acta Gen Subj ; 1862(12): 2590-2604, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30071272

RESUMO

BACKGROUND: Carbamylation is a non-enzymatic post-translational modification (PTM), which involves the covalent modification of N-terminus of protein or ε-amino group of Lys. The role of carbamylation in several age-related disorders is well documented, however, the relationship between carbamylation and neurodegenerative disorders including Alzheimer's disease remains uncharted. METHODS: In the present study, using aggregation-prone tau-core hexapeptide fragments 306VQIVYK311 (PHF6) and 275VQIINK280 (PHF6*) as models, we have elucidated the effect of carbamylation on aggregation kinetics and the changes occurring in the 3-dimensional architecture of fibrils using biophysical assays and molecular dynamics simulations. RESULTS: We found that carbamylation aids in amyloid formation and can convert the unstructured off-pathway aggregates into robust amyloids, which were toxic to cells. Electron microscopy images and molecular dynamics simulations of PHF6 fibrils showed that carbamylated peptides can form excess hydrogen bonds and modulate the pitch length and twist of peptides fibrils. We have also compared N-terminal carbamylation to acetylation and further extended our finding to full length tau that exhibits aggregation upon carbamylation even in the absence of any external inducer. CONCLUSION: Our in vitro and in silico results together suggest that carbamylation can modulate the aggregation pathway of the amyloidegenic sequences and cause structural changes in fibril assemblies. GENERAL SIGNIFICANCE: Carbamylation acts as a switch, which triggers the aggregation in short amyloidogenic peptide fragments and modulate the structural changes in resulting amyloid fibrils.


Assuntos
Amiloide/biossíntese , Proteínas de Transporte/química , Oligopeptídeos/química , Carbamilação de Proteínas , Proteínas tau/química , Acetilação , Doença de Alzheimer/metabolismo , Sequência de Aminoácidos , Amiloide/química , Humanos , Ligação de Hidrogênio , Microscopia Eletrônica de Transmissão , Microscopia de Fluorescência , Simulação de Dinâmica Molecular , Peptídeos/química , Conformação Proteica
2.
Biochim Biophys Acta Gen Subj ; 1862(7): 1565-1575, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29634991

RESUMO

BACKGROUND: Alzheimer's disease (AD) is the most common neurodegenerative disorder which is characterized by the deposits of intra-cellular tau protein and extra-cellular amyloid-ß (Aß) peptides in the human brain. Understanding the mechanism of protein aggregation and finding compounds that are capable of inhibiting its aggregation is considered to be highly important for disease therapy. METHODS: We used an in vitro High-Throughput Screening for the identification of potent inhibitors of tau aggregation using a proxy model; a highly aggregation-prone hexapeptide fragment 306VQIVYK311 derived from tau. Using ThS fluorescence assay we screened a library of 2401 FDA approved, bio-active and natural compounds in attempt to find molecules which can efficiently modulate tau aggregation. RESULTS: Among the screened compounds, palmatine chloride (PC) alkaloid was able to dramatically reduce the aggregation propensity of PHF6 at sub-molar concentrations. PC was also able to disassemble preformed aggregates of PHF6 and reduce the amyloid content in a dose-dependent manner. Insights obtained from MD simulation showed that PC interacted with the key residues of PHF6 responsible for ß-sheet formation, which could likely be the mechanism of inhibition and disassembly. Furthermore, PC could effectively inhibit the aggregation of full-length tau and disassemble preformed aggregates. CONCLUSIONS: We found that PC possesses "dual functionality" towards PHF6 and full-length tau, i.e. inhibit their aggregation and disassemble pre-formed fibrils. GENERAL SIGNIFICANCE: The "dual functionality" of PC is valuable as a disease modifying strategy for AD, and other tauopathies, by inhibiting their progress and reducing the effect of fibrils already present in the brain.


Assuntos
Alcaloides de Berberina/farmacologia , Fragmentos de Peptídeos/efeitos dos fármacos , Proteínas tau/efeitos dos fármacos , Neoplasias das Glândulas Suprarrenais/patologia , Amiloide/efeitos dos fármacos , Amiloide/ultraestrutura , Dicroísmo Circular , Simulação por Computador , Ensaios de Triagem em Larga Escala , Humanos , Técnicas In Vitro , Simulação de Acoplamento Molecular , Fragmentos de Peptídeos/química , Feocromocitoma/patologia , Agregação Patológica de Proteínas , Células Tumorais Cultivadas , Proteínas tau/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...