Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-39026847

RESUMO

Gastrointestinal colonization by Clostridioides difficile is common in healthcare settings and ranges in clinical presentation from asymptomatic carriage to lethal C. difficile infection (CDI). We used a systems biology approach to investigate why patients colonized with C. difficile have a range of outcomes. Microbiota-humanization of germ-free mice with fecal samples from toxigenic C. difficile carriers revealed a spectrum of virulence among clade 1 lineages and identified commensal Blautia associated with markers of non-pathogenic colonization. Using gnotobiotic mice engrafted with defined human microbiota, we observed strain-specific CDI severity across clade 1 strains. Yet, mice engrafted with a higher diversity community were protected from severe disease across all strains without suppression of C. difficile colonization. These results indicate that when colonization resistance has been breached without overt infection, commensals can attenuate a diversity of virulent strains without inhibiting pathogen colonization, providing insight into determinants of stable C. difficile carriage.

2.
bioRxiv ; 2024 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-39005317

RESUMO

Bifidobacteria are among the earliest colonizers of the human gut, conferring numerous health benefits. While multiple Bifidobacterium strains are used as probiotics, accumulating evidence suggests that the individual responses to probiotic supplementation may vary, likely due to a variety of factors, including strain type(s), gut community composition, dietary habits of the consumer, and other health/lifestyle conditions. Given the saccharolytic nature of bifidobacteria, the carbohydrate composition of the diet is one of the primary factors dictating the colonization efficiency of Bifidobacterium strains. Therefore, a comprehensive understanding of bifidobacterial glycan metabolism at the strain level is necessary to rationally design probiotic or synbiotic formulations that combine bacterial strains with glycans that match their nutrient preferences. In this study, we systematically reconstructed 66 pathways involved in the utilization of mono-, di-, oligo-, and polysaccharides by analyzing the representation of 565 curated metabolic functional roles (catabolic enzymes, transporters, transcriptional regulators) in 2973 non-redundant cultured Bifidobacterium isolates and metagenome-assembled genomes (MAGs). Our analysis uncovered substantial heterogeneity in the predicted glycan utilization capabilities at the species and strain level and revealed the presence of a yet undescribed phenotypically distinct subspecies-level clade within the Bifidobacterium longum species. We also identified Bangladeshi isolates harboring unique gene clusters tentatively implicated in the breakdown of xyloglucan and human milk oligosaccharides. Predicted carbohydrate utilization phenotypes were experimentally characterized and validated. Our large-scale genomic analysis considerably expands the knowledge of carbohydrate metabolism in bifidobacteria and provides a foundation for rationally designing single- or multi-strain probiotic formulations of a given bifidobacterial species as well as synbiotic combinations of bifidobacterial strains matched with their preferred carbohydrate substrates.

3.
Nature ; 625(7993): 157-165, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38093016

RESUMO

Evidence is accumulating that perturbed postnatal development of the gut microbiome contributes to childhood malnutrition1-4. Here we analyse biospecimens from a randomized, controlled trial of a microbiome-directed complementary food (MDCF-2) that produced superior rates of weight gain compared with a calorically more dense conventional ready-to-use supplementary food in 12-18-month-old Bangladeshi children with moderate acute malnutrition4. We reconstructed 1,000 bacterial genomes (metagenome-assembled genomes (MAGs)) from the faecal microbiomes of trial participants, identified 75 MAGs of which the abundances were positively associated with ponderal growth (change in weight-for-length Z score (WLZ)), characterized changes in MAG gene expression as a function of treatment type and WLZ response, and quantified carbohydrate structures in MDCF-2 and faeces. The results reveal that two Prevotella copri MAGs that are positively associated with WLZ are the principal contributors to MDCF-2-induced expression of metabolic pathways involved in utilizing the component glycans of MDCF-2. The predicted specificities of carbohydrate-active enzymes expressed by their polysaccharide-utilization loci are correlated with (1) the in vitro growth of Bangladeshi P. copri strains, possessing varying degrees of polysaccharide-utilization loci and genomic conservation with these MAGs, in defined medium containing different purified glycans representative of those in MDCF-2, and (2) the levels of faecal carbohydrate structures in the trial participants. These associations suggest that identifying bioactive glycan structures in MDCFs metabolized by growth-associated bacterial taxa will help to guide recommendations about their use in children with acute malnutrition and enable the development of additional formulations.


Assuntos
Alimentos , Microbioma Gastrointestinal , Desnutrição , Polissacarídeos , Humanos , Lactente , Bactérias/genética , Bangladesh , Peso Corporal/genética , Fezes/microbiologia , Microbioma Gastrointestinal/fisiologia , Genoma Bacteriano/genética , Desnutrição/microbiologia , Metagenoma/genética , Polissacarídeos/metabolismo , Aumento de Peso
4.
Proc Natl Acad Sci U S A ; 120(39): e2311422120, 2023 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-37733741

RESUMO

Understanding how members of the human gut microbiota prioritize nutrient resources is one component of a larger effort to decipher the mechanisms defining microbial community robustness and resiliency in health and disease. This knowledge is foundational for development of microbiota-directed therapeutics. To model how bacteria prioritize glycans in the gut, germfree mice were colonized with 13 human gut bacterial strains, including seven saccharolytic Bacteroidaceae species. Animals were fed a Western diet supplemented with pea fiber. After community assembly, an inducible CRISPR-based system was used to selectively and temporarily reduce the absolute abundance of Bacteroides thetaiotaomicron or B. cellulosilyticus by 10- to 60-fold. Each knockdown resulted in specific, reproducible increases in the abundances of other Bacteroidaceae and dynamic alterations in their expression of genes involved in glycan utilization. Emergence of these "alternate consumers" was associated with preservation of community saccharolytic activity. Using an inducible system for CRISPR base editing in vitro, we disrupted translation of transporters critical for utilizing dietary polysaccharides in Phocaeicola vulgatus, a B. cellulosilyticus knockdown-responsive taxon. In vitro and in vivo tests of the resulting P. vulgatus mutants allowed us to further characterize mechanisms associated with its increased fitness after knockdown. In principle, the approach described can be applied to study utilization of a range of nutrients and to preclinical efforts designed to develop therapeutic strategies for precision manipulation of microbial communities.


Assuntos
Bacteroides thetaiotaomicron , Bacteroides , Humanos , Animais , Camundongos , Bacteroides/genética , Polissacarídeos , Bacteroides thetaiotaomicron/genética , Bioensaio , Dieta Ocidental
5.
medRxiv ; 2023 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-37645824

RESUMO

Evidence is accumulating that perturbed postnatal development of the gut microbiome contributes to childhood malnutrition1-4. Designing effective microbiome-directed therapeutic foods to repair these perturbations requires knowledge about how food components interact with the microbiome to alter its expressed functions. Here we use biospecimens from a randomized, controlled trial of a microbiome-directed complementary food prototype (MDCF-2) that produced superior rates of weight gain compared to a conventional ready-to-use supplementary food (RUSF) in 12-18-month-old Bangladeshi children with moderate acute malnutrition (MAM)4. We reconstructed 1000 bacterial genomes (metagenome-assembled genomes, MAGs) present in their fecal microbiomes, identified 75 whose abundances were positively associated with weight gain (change in weight-for-length Z score, WLZ), characterized gene expression changes in these MAGs as a function of treatment type and WLZ response, and used mass spectrometry to quantify carbohydrate structures in MDCF-2 and feces. The results reveal treatment-induced changes in expression of carbohydrate metabolic pathways in WLZ-associated MAGs. Comparing participants consuming MDCF-2 versus RUSF, and MDCF-2-treated children in the upper versus lower quartiles of WLZ responses revealed that two Prevotella copri MAGs positively associated with WLZ were principal contributors to MDCF-2-induced expression of metabolic pathways involved in utilization of its component glycans. Moreover, the predicted specificities of carbohydrate active enzymes expressed by polysaccharide utilization loci (PULs) in these two MAGs correlate with the (i) in vitro growth of Bangladeshi P. copri strains, possessing differing degrees of PUL and overall genomic content similarity to these MAGs, cultured in defined medium containing different purified glycans representative of those in MDCF-2, and (ii) levels of carbohydrate structures identified in feces from clinical trial participants. In the accompanying paper5, we use a gnotobiotic mouse model colonized with age- and WLZ-associated bacterial taxa cultured from this study population, and fed diets resembling those consumed by study participants, to directly test the relationship between P. copri, MDCF-2 glycan metabolism, host ponderal growth responses, and intestinal gene expression and metabolism. The ability to identify bioactive glycan structures in MDCFs that are metabolized by growth-associated bacterial taxa will help guide recommendations about use of this MDCF for children with acute malnutrition representing different geographic locales and ages, as well as enable development of bioequivalent, or more efficacious, formulations composed of culturally acceptable and affordable ingredients.

6.
Science ; 379(6628): eadd1236, 2023 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-36634180

RESUMO

Tau-mediated neurodegeneration is a hallmark of Alzheimer's disease. Primary tauopathies are characterized by pathological tau accumulation and neuronal and synaptic loss. Apolipoprotein E (ApoE)-mediated neuroinflammation is involved in the progression of tau-mediated neurodegeneration, and emerging evidence suggests that the gut microbiota regulates neuroinflammation in an APOE genotype-dependent manner. However, evidence of a causal link between the microbiota and tau-mediated neurodegeneration is lacking. In this study, we characterized a genetically engineered mouse model of tauopathy expressing human ApoE isoforms reared under germ-free conditions or after perturbation of their gut microbiota with antibiotics. Both of these manipulations reduced gliosis, tau pathology, and neurodegeneration in a sex- and ApoE isoform-dependent manner. The findings reveal mechanistic and translationally relevant interrelationships between the microbiota, neuroinflammation, and tau-mediated neurodegeneration.


Assuntos
Apolipoproteínas E , Microbioma Gastrointestinal , Doenças Neuroinflamatórias , Tauopatias , Animais , Humanos , Camundongos , Antibacterianos/farmacologia , Apolipoproteínas E/genética , Apolipoproteínas E/metabolismo , Modelos Animais de Doenças , Microbioma Gastrointestinal/efeitos dos fármacos , Microbioma Gastrointestinal/fisiologia , Camundongos Transgênicos , Doenças Neuroinflamatórias/genética , Doenças Neuroinflamatórias/metabolismo , Doenças Neuroinflamatórias/microbiologia , Proteínas tau/genética , Proteínas tau/metabolismo , Tauopatias/genética , Tauopatias/metabolismo , Tauopatias/microbiologia , Fatores Sexuais
7.
Sci Transl Med ; 14(640): eabk1107, 2022 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-35417188

RESUMO

Disrupted development of the gut microbiota is a contributing cause of childhood malnutrition. Bifidobacterium longum subspecies infantis is a prominent early colonizer of the infant gut that consumes human milk oligosaccharides (HMOs). We found that the absolute abundance of Bifidobacterium infantis is lower in 3- to 24-month-old Bangladeshi infants with severe acute malnutrition (SAM) compared to their healthy age-matched counterparts. A single-blind, placebo-controlled trial (SYNERGIE) was conducted in 2- to 6-month-old Bangladeshi infants with SAM. A commercial U.S. donor-derived B. infantis strain (EVC001) was administered daily with or without the HMO lacto-N-neotetraose for 28 days. This intervention increased fecal B. infantis abundance in infants with SAM, although to levels still 10- to 100-fold lower than in untreated healthy controls. EVC001 treatment promoted weight gain that was associated with reduced intestinal inflammation markers in infants with SAM. We cultured fecal B. infantis strains from Bangladeshi infants and colonized gnotobiotic mice with these cultured strains. The gnotobiotic mice were fed a diet representative of that consumed by 6-month-old Bangladeshi infants, with or without HMO supplementation. One B. infantis strain, Bg_2D9, expressing two gene clusters involved in uptake and utilization of N-glycans and plant-derived polysaccharides, exhibited superior fitness over EVC001. The fitness advantage of Bg_2D9 was confirmed in a gnotobiotic mouse model of mother-to-infant gut microbiota transmission where dams received a pretreatment fecal community from a SAM infant in the SYNERGIE trial. Whether Bg_2D9 is superior to EVC001 for treating malnourished infants who consume a diet with limited breastmilk requires further clinical testing.


Assuntos
Bifidobacterium longum subspecies infantis , Desnutrição Aguda Grave , Animais , Bifidobacterium , Fezes/microbiologia , Humanos , Lactente , Camundongos , Leite Humano , Método Simples-Cego , Aumento de Peso
8.
Cell Host Microbe ; 29(4): 664-673.e5, 2021 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-33571448

RESUMO

Greater understanding of the spatial relationships between members of the human gut microbiota and available nutrients is needed to gain deeper insights about community dynamics and expressed functions. Therefore, we generated a panel of artificial food particles with each type composed of microscopic paramagnetic beads coated with a fluorescent barcode and one of 60 different dietary or host glycan preparations. Analysis of 160 Bacteroides and Parabacteroides strains disclosed diverse strain-specific and glycan-specific binding phenotypes. We identified carbohydrate structures that correlated with binding by specific bacterial strains in vitro and noted strain-specific differences in the catabolism of glycans that mediate adhesion. Mixed in vitro cultures revealed that these adhesion phenotypes are maintained in more complex communities. Additionally, orally administering glycan beads to gnotobiotic mice confirmed specificity in glycan binding. This approach should facilitate analyses of how strains occupying the same physical niche interact, and it should advance the development of synbiotics, more nutritious foods, and microbiota-based diagnostics.


Assuntos
Bactérias/metabolismo , Microbioma Gastrointestinal/fisiologia , Polissacarídeos/metabolismo , Animais , Bactérias/classificação , Bactérias/genética , Bacteroides , Alimentos , Trato Gastrointestinal/microbiologia , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Polissacarídeos/administração & dosagem
9.
N Engl J Med ; 383(4): 321-333, 2020 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-32706533

RESUMO

BACKGROUND: Environmental enteric dysfunction (EED) is an enigmatic disorder of the small intestine that is postulated to play a role in childhood undernutrition, a pressing global health problem. Defining the incidence of this disorder, its pathophysiological features, and its contribution to impaired linear and ponderal growth has been hampered by the difficulty in directly sampling the small intestinal mucosa and microbial community (microbiota). METHODS: In this study, among 110 young children (mean age, 18 months) with linear growth stunting who were living in an urban slum in Dhaka, Bangladesh, and had not benefited from a nutritional intervention, we performed endoscopy in 80 children who had biopsy-confirmed EED and available plasma and duodenal samples. We quantified the levels of 4077 plasma proteins and 2619 proteins in duodenal biopsy samples obtained from these children. The levels of bacterial strains in microbiota recovered from duodenal aspirate from each child were determined with the use of culture-independent methods. In addition, we obtained 21 plasma samples and 27 fecal samples from age-matched healthy children living in the same area. Young germ-free mice that had been fed a Bangladeshi diet were colonized with bacterial strains cultured from the duodenal aspirates. RESULTS: Of the bacterial strains that were obtained from the children, the absolute levels of a shared group of 14 taxa (which are not typically classified as enteropathogens) were negatively correlated with linear growth (length-for-age z score, r = -0.49; P = 0.003) and positively correlated with duodenal proteins involved in immunoinflammatory responses. The representation of these 14 duodenal taxa in fecal microbiota was significantly different from that in samples obtained from healthy children (P<0.001 by permutational multivariate analysis of variance). Enteropathy of the small intestine developed in gnotobiotic mice that had been colonized with cultured duodenal strains obtained from children with EED. CONCLUSIONS: These results provide support for a causal relationship between growth stunting and components of the small intestinal microbiota and enteropathy and offer a rationale for developing therapies that target these microbial contributions to EED. (Funded by the Bill and Melinda Gates Foundation and others; ClinicalTrials.gov number, NCT02812615.).


Assuntos
Duodeno/microbiologia , Microbioma Gastrointestinal , Transtornos do Crescimento/microbiologia , Transtornos da Nutrição do Lactente/complicações , Animais , Bactérias/isolamento & purificação , Bangladesh , Duodenoscopia , Duodeno/patologia , Doença Ambiental/complicações , Fezes/microbiologia , Feminino , Vida Livre de Germes , Crescimento , Transtornos do Crescimento/etiologia , Humanos , Lactente , Doenças Inflamatórias Intestinais/complicações , Fator de Crescimento Insulin-Like I/análise , Enteropatias/complicações , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Análise Multivariada , Proteínas Associadas a Pancreatite/análise , Proteoma/análise
10.
Cell Host Microbe ; 27(6): 899-908.e5, 2020 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-32348782

RESUMO

Undernourished children in low-income countries often exhibit poor responses to oral vaccination. Perturbed microbiota development is linked to undernutrition, but whether and how microbiota changes affect vaccine responsiveness remains unclear. Here, we show that gnotobiotic mice colonized with microbiota from undernourished Bangladeshi children and fed a Bangladeshi diet exhibited microbiota-dependent differences in mucosal IgA responses to oral vaccination with cholera toxin (CT). Supplementation with a nutraceutical consisting of spirulina, amaranth, flaxseed, and micronutrients augmented CT-IgA production. Mice initially colonized with a microbiota associated with poor CT responses exhibited improved immunogenicity upon invasion of bacterial taxa from cagemates colonized with a more "responsive" microbiota. Additionally, a consortium of five cultured bacterial invaders conferred augmented CT-IgA responses in mice fed the supplemented diet and colonized with the "hypo-responsive" community. These results provide preclinical proof-of-concept that diet and microbiota influence mucosal immune responses to CT vaccination and identify a candidate synbiotic formulation.


Assuntos
Cólera , Microbioma Gastrointestinal/fisiologia , Desnutrição , Prebióticos , Vacinação , Animais , Bactérias/classificação , Criança , Toxina da Cólera/farmacologia , Dieta , Suplementos Nutricionais , Modelos Animais de Doenças , Vida Livre de Germes , Humanos , Imunidade nas Mucosas , Imunoglobulina A , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mucosa/imunologia , Probióticos
11.
Proc Natl Acad Sci U S A ; 116(24): 11988-11996, 2019 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-31138692

RESUMO

Undernutrition in children is a pressing global health problem, manifested in part by impaired linear growth (stunting). Current nutritional interventions have been largely ineffective in overcoming stunting, emphasizing the need to obtain better understanding of its underlying causes. Treating Bangladeshi children with severe acute malnutrition with therapeutic foods reduced plasma levels of a biomarker of osteoclastic activity without affecting biomarkers of osteoblastic activity or improving their severe stunting. To characterize interactions among the gut microbiota, human milk oligosaccharides (HMOs), and osteoclast and osteoblast biology, young germ-free mice were colonized with cultured bacterial strains from a 6-mo-old stunted infant and fed a diet mimicking that consumed by the donor population. Adding purified bovine sialylated milk oligosaccharides (S-BMO) with structures similar to those in human milk to this diet increased femoral trabecular bone volume and cortical thickness, reduced osteoclasts and their bone marrow progenitors, and altered regulators of osteoclastogenesis and mediators of Th2 responses. Comparisons of germ-free and colonized mice revealed S-BMO-dependent and microbiota-dependent increases in cecal levels of succinate, increased numbers of small intestinal tuft cells, and evidence for activation of a succinate-induced tuft cell signaling pathway linked to Th2 immune responses. A prominent fucosylated HMO, 2'-fucosyllactose, failed to elicit these changes in bone biology, highlighting the structural specificity of the S-BMO effects. These results underscore the need to further characterize the balance between, and determinants of, osteoclastic and osteoblastic activity in stunted infants/children, and suggest that certain milk oligosaccharides may have therapeutic utility in this setting.


Assuntos
Osso e Ossos/efeitos dos fármacos , Vida Livre de Germes/efeitos dos fármacos , Desnutrição/tratamento farmacológico , Leite Humano/metabolismo , Oligossacarídeos/administração & dosagem , Osteoblastos/efeitos dos fármacos , Osteoclastos/efeitos dos fármacos , Animais , Bactérias/efeitos dos fármacos , Bovinos , Dieta , Modelos Animais de Doenças , Fezes/microbiologia , Microbioma Gastrointestinal/efeitos dos fármacos , Humanos , Lactente , Intestino Delgado/microbiologia , Masculino , Desnutrição/microbiologia , Camundongos , Camundongos Endogâmicos C57BL , Transdução de Sinais/efeitos dos fármacos
12.
Sci Transl Med ; 8(366): 366ra164, 2016 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-27881825

RESUMO

To model how interactions among enteropathogens and gut microbial community members contribute to undernutrition, we colonized gnotobiotic mice fed representative Bangladeshi diets with sequenced bacterial strains cultured from the fecal microbiota of two 24-month-old Bangladeshi children: one healthy and the other underweight. The undernourished donor's bacterial collection contained an enterotoxigenic Bacteroides fragilis strain (ETBF), whereas the healthy donor's bacterial collection contained two nontoxigenic strains of B. fragilis (NTBF). Analyses of mice harboring either the unmanipulated culture collections or systematically manipulated versions revealed that ETBF was causally related to weight loss in the context of its native community but not when introduced into the healthy donor's community. This phenotype was transmissible from the dams to their offspring and was associated with derangements in host energy metabolism manifested by impaired tricarboxylic acid cycle activity and decreased acyl-coenzyme A utilization. NTBF reduced ETBF's expression of its enterotoxin and mitigated the effects of ETBF on the transcriptomes of other healthy donor community members. These results illustrate how intraspecific (ETBF-NTBF) and interspecific interactions influence the effects of harboring B. fragilis.


Assuntos
Transtornos da Nutrição Infantil/microbiologia , Microbioma Gastrointestinal , Animais , Bacteroides fragilis/isolamento & purificação , Bangladesh , Caquexia/microbiologia , Pré-Escolar , Dieta , Modelos Animais de Doenças , Fezes/microbiologia , Feminino , Regulação Bacteriana da Expressão Gênica , Vida Livre de Germes/genética , Humanos , Lactente , Masculino , Camundongos , Fenótipo
13.
Cell ; 164(5): 859-71, 2016 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-26898329

RESUMO

Identifying interventions that more effectively promote healthy growth of children with undernutrition is a pressing global health goal. Analysis of human milk oligosaccharides (HMOs) from 6-month-postpartum mothers in two Malawian birth cohorts revealed that sialylated HMOs are significantly less abundant in those with severely stunted infants. To explore this association, we colonized young germ-free mice with a consortium of bacterial strains cultured from the fecal microbiota of a 6-month-old stunted Malawian infant and fed recipient animals a prototypic Malawian diet with or without purified sialylated bovine milk oligosaccharides (S-BMO). S-BMO produced a microbiota-dependent augmentation of lean body mass gain, changed bone morphology, and altered liver, muscle, and brain metabolism in ways indicative of a greater ability to utilize nutrients for anabolism. These effects were also documented in gnotobiotic piglets using the same consortium and Malawian diet. These preclinical models indicate a causal, microbiota-dependent relationship between S-BMO and growth promotion.


Assuntos
Desenvolvimento Infantil , Desnutrição/dietoterapia , Leite Humano/química , Leite/química , Oligossacarídeos/metabolismo , Animais , Bacteroides fragilis/genética , Bifidobacterium/classificação , Bifidobacterium/genética , Química Encefálica , Modelos Animais de Doenças , Escherichia coli/genética , Fezes/microbiologia , Vida Livre de Germes , Humanos , Lactente , Malaui , Masculino , Metabolômica , Camundongos , Camundongos Endogâmicos C57BL , Microbiota
14.
J Biol Chem ; 290(20): 12630-49, 2015 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-25795776

RESUMO

The adaptive immune response to the human gut microbiota consists of a complex repertoire of antibodies interacting with a broad range of taxa. Fusing intestinal lamina propria lymphocytes from mice monocolonized with Bacteroides thetaiotaomicron to a myeloma fusion partner allowed us to recover hybridomas that captured naturally primed, antigen-specific antibody responses representing multiple isotypes, including IgA. One of these hybridomas, 260.8, produced a monoclonal antibody that recognizes an epitope specific for B. thetaiotaomicron isolates in a large panel of hospital- and community-acquired Bacteroides. Whole genome transposon mutagenesis revealed a 19-gene locus, involved in LPS O-antigen polysaccharide synthesis and conserved among multiple B. thetaiotaomicron isolates, that is required for 260.8 epitope expression. Mutants in this locus exhibited marked fitness defects in vitro during growth in rich medium and in gnotobiotic mice colonized with defined communities of human gut symbionts. Expression of the 260.8 epitope was sustained during 10 months of daily passage in vitro and during 14 months of monocolonization of gnotobiotic wild-type, Rag1-/-, or Myd88-/- mice. Comparison of gnotobiotic Rag1-/- mice with and without subcutaneous 260.8 hybridomas disclosed that this IgA did not affect B. thetaiotaomicron population density or suppress 260.8 epitope production but did affect bacterial gene expression in ways emblematic of a diminished host innate immune response. Our study illustrates an approach for (i) generating diagnostic antibodies, (ii) characterizing IgA responses along a continuum of specificity/degeneracy that defines the IgA repertoire to gut symbionts, and (iii) identifying immunogenic epitopes that affect competitiveness and help maintain host-microbe mutualism.


Assuntos
Anticorpos Antibacterianos/imunologia , Bacteroides/imunologia , Epitopos/imunologia , Imunoglobulina A/imunologia , Mucosa Intestinal/imunologia , Animais , Anticorpos Antibacterianos/genética , Bacteroides/genética , Elementos de DNA Transponíveis , Epitopos/genética , Loci Gênicos/imunologia , Humanos , Mucosa Intestinal/microbiologia , Camundongos , Camundongos Knockout , Mutagênese , Mutação , Antígenos O/genética , Antígenos O/imunologia , Especificidade da Espécie
15.
Science ; 341(6141): 1237439, 2013 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-23828941

RESUMO

A low-error 16S ribosomal RNA amplicon sequencing method, in combination with whole-genome sequencing of >500 cultured isolates, was used to characterize bacterial strain composition in the fecal microbiota of 37 U.S. adults sampled for up to 5 years. Microbiota stability followed a power-law function, which when extrapolated suggests that most strains in an individual are residents for decades. Shared strains were recovered from family members but not from unrelated individuals. Sampling of individuals who consumed a monotonous liquid diet for up to 32 weeks indicated that changes in strain composition were better predicted by changes in weight than by differences in sampling interval. This combination of stability and responsiveness to physiologic change confirms the potential of the gut microbiota as a diagnostic tool and therapeutic target.


Assuntos
Trato Gastrointestinal/microbiologia , Metagenoma , Adulto , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Composição Corporal , Restrição Calórica , Família , Fezes/microbiologia , Feminino , Genoma Bacteriano/genética , Instabilidade Genômica , Humanos , Masculino , Modelos Biológicos , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Fatores de Tempo , Redução de Peso , Adulto Jovem
16.
Proc Natl Acad Sci U S A ; 108 Suppl 1: 4599-606, 2011 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-21317366

RESUMO

The human gut microbiota harbors three main groups of H(2)-consuming microbes: methanogens including the dominant archaeon, Methanobrevibacter smithii, a polyphyletic group of acetogens, and sulfate-reducing bacteria. Defining their roles in the gut is important for understanding how hydrogen metabolism affects the efficiency of fermentation of dietary components. We quantified methanogens in fecal samples from 40 healthy adult female monozygotic (MZ) and 28 dizygotic (DZ) twin pairs, analyzed bacterial 16S rRNA datasets generated from their fecal samples to identify taxa that co-occur with methanogens, sequenced the genomes of 20 M. smithii strains isolated from families of MZ and DZ twins, and performed RNA-Seq of a subset of strains to identify their responses to varied formate concentrations. The concordance rate for methanogen carriage was significantly higher for MZ versus DZ twin pairs. Co-occurrence analysis revealed 22 bacterial species-level taxa positively correlated with methanogens: all but two were members of the Clostridiales, with several being, or related to, known hydrogen-producing and -consuming bacteria. The M. smithii pan-genome contains 987 genes conserved in all strains, and 1,860 variably represented genes. Strains from MZ and DZ twin pairs had a similar degree of shared genes and SNPs, and were significantly more similar than strains isolated from mothers or members of other families. The 101 adhesin-like proteins (ALPs) in the pan-genome (45 ± 6 per strain) exhibit strain-specific differences in expression and responsiveness to formate. We hypothesize that M. smithii strains use their different repertoires of ALPs to create diversity in their metabolic niches, by allowing them to establish syntrophic relationships with bacterial partners with differing metabolic capabilities and patterns of co-occurrence.


Assuntos
Adesinas Bacterianas/genética , Trato Gastrointestinal/microbiologia , Genoma Arqueal , Methanobrevibacter/genética , Gêmeos , Adulto , Sequência de Bases , Feminino , Formiatos/análise , Humanos , Metagenômica , Methanobrevibacter/metabolismo , Dados de Sequência Molecular , Polimorfismo de Nucleotídeo Único/genética , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Especificidade da Espécie
17.
J Exp Med ; 206(13): 3061-72, 2009 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-20008521

RESUMO

Variation of surface antigen expression is a mechanism used by microbes to adapt to and persist within their host habitats. Helicobacter pylori, a persistent bacterial colonizer of the human stomach, can alter its surface Lewis (Le) antigen expression. We examined H. pylori colonization in mice to test the hypothesis that host phenotype selects for H. pylori (Le) phenotypes. When wild-type and Le(b)-expressing transgenic FVB/N mice were challenged with H. pylori strain HP1, expressing Le(x) and Le(y), we found that bacterial populations recovered after 8 mo from Le(b)-transgenic, but not wild-type, mice expressed Le(b). Changes in Le phenotype were linked to variation of a putative galactosyltransferase gene (beta-(1,3)galT); mutagenesis and complementation revealed its essential role in type I antigen expression. These studies indicate that H. pylori evolves to resemble the host's gastric Le phenotype, and reveal a bacterial genetic locus that is subject to host-driven selection pressure.


Assuntos
Helicobacter pylori/imunologia , Antígenos do Grupo Sanguíneo de Lewis/análise , Antígenos CD15/análise , Oligossacarídeos/fisiologia , Adesinas Bacterianas/análise , Animais , Anticorpos Antibacterianos/sangue , Citometria de Fluxo , Fucosiltransferases/genética , Galactosiltransferases/genética , Lipopolissacarídeos/toxicidade , Camundongos , Camundongos Transgênicos , Fenótipo
18.
J Biol Chem ; 284(44): 30383-94, 2009 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-19723631

RESUMO

Helicobacter pylori infection is associated with gastric adenocarcinoma in some humans, especially those that develop an antecedent condition, chronic atrophic gastritis (ChAG). Gastric epithelial progenitors (GEPs) in transgenic gnotobiotic mice with a ChAG-like phenotype harbor intracellular collections of H. pylori. To characterize H. pylori adaptations to ChAG, we sequenced the genomes of 24 isolates obtained from 6 individuals, each sampled over a 4-year interval, as they did or did not progress from normal gastric histology to ChAG and/or adenocarcinoma. H. pylori populations within study participants were largely clonal and remarkably stable regardless of disease state. GeneChip studies of the responses of a cultured mouse gastric stem cell-like line (mGEPs) to infection with sequenced strains yielded a 695-member dataset of transcripts that are (i) differentially expressed after infection with ChAG-associated isolates, but not with a "normal" or a heat-killed ChAG isolate, and (ii) enriched in genes and gene functions associated with tumorigenesis in general and gastric carcinogenesis in specific cases. Transcriptional profiling of a ChAG strain during mGEP infection disclosed a set of responses, including up-regulation of hopZ, an adhesin belonging to a family of outer membrane proteins. Expression profiles of wild-type and DeltahopZ strains revealed a number of pH-regulated genes modulated by HopZ, including hopP, which binds sialylated glycans produced by GEPs in vivo. Genetic inactivation of hopZ produced a fitness defect in the stomachs of gnotobiotic transgenic mice but not in wild-type littermates. This study illustrates an approach for identifying GEP responses specific to ChAG-associated H. Pylori strains and bacterial genes important for survival in a model of the ChAG gastric ecosystem.


Assuntos
Gastrite Atrófica/microbiologia , Perfilação da Expressão Gênica , Helicobacter pylori/genética , Células-Tronco/microbiologia , Animais , Proteínas de Bactérias/genética , Linhagem Celular , Doença Crônica , Mucosa Gástrica/citologia , Infecções por Helicobacter/microbiologia , Helicobacter pylori/isolamento & purificação , Helicobacter pylori/fisiologia , Humanos , Camundongos , Células-Tronco/metabolismo , Suécia , Transcrição Gênica
19.
Cell Host Microbe ; 2(5): 328-39, 2007 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-18005754

RESUMO

Colonization of germ-free mice with a normal gut microbiota elicits bacteria-specific IgA antibody responses. The effects of these responses on microbial and host biology remain poorly defined. Therefore, we developed a gnotobiotic mouse model where the microbiota is reduced to one bacterial species, and the antibody repertoire to a single, monoclonal IgA against the bacterium's capsular polysaccharide. Bacteroides thetaiotaomicron was introduced into germ-free wild-type, immunodeficient Rag1(-/-), or Rag1(-/-) mice harboring IgA-producing hybridoma cells. Without IgA, B. thetaiotaomicron elicits a more robust innate immune response and reacts to this response by inducing genes that metabolize host oxidative products. IgA reduces intestinal proinflammatory signaling and bacterial epitope expression, thereby balancing suppression of the oxidative burst with the antibody's negative impact on bacterial fitness. These results underscore the adaptive immune system's critical role in establishing a sustainable host-microbial relationship. Immunoselection of bacterial epitope expression may contribute to the remarkable strain-level diversity in this ecosystem.


Assuntos
Anticorpos Antibacterianos/fisiologia , Infecções por Bacteroides/imunologia , Infecções por Bacteroides/microbiologia , Bacteroides/fisiologia , Homeostase , Imunoglobulina A/fisiologia , Simbiose , Animais , Cápsulas Bacterianas/imunologia , Ceco/imunologia , Ceco/microbiologia , Epitopos/imunologia , Expressão Gênica , Genes Bacterianos/genética , Genes RAG-1 , Vida Livre de Germes , Proteínas de Homeodomínio/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Óxido Nítrico Sintase Tipo II/metabolismo
20.
Microbes Infect ; 6(2): 213-20, 2004 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-14998521

RESUMO

Helicobacter pylori is acquired during childhood, but its mode of transmission remains unclear. A genotyped H. pylori isolate (Hp1) that expresses two classes of adhesins was introduced into the stomachs of three types of germ-free FVB/N mice to model factors that may affect spread of H. pylori in humans. Normal mice represented human hosts with normal gastric acid production. Transgenic animals expressing human alpha-1,3/4-fucosyltransferase in their gastric pit cells represented humans with normal acid production and the commonly encountered Lewis(b) histo-blood group receptor for the bacterium's BabA adhesin. tox176 transgenic mice have a genetically engineered ablation of their acid-producing parietal cells and increased proliferation of gastric epithelial lineage progenitors that express sialylated glycan receptors for the bacterium's SabA adhesin. These mice mimic features encountered in humans with H. pylori-associated chronic atrophic gastritis (CAG). Different combinations and numbers of 6-week-old germ-free normal and transgenic mice were housed together. At least one donor mouse per cage was infected with a single gavage of 10(7) colony-forming units of Hp1. All cagemates were sacrificed 8 weeks later. Cultures of gastric and cecal contents, plus quantitative PCR assays of cecal contents harvested from donors and potential recipients, revealed that transmission only occurred between tox176 donors and tox176 recipients, and that the distribution of Hp1 along the gastrointestinal tract was significantly broader in mice without parietal cells (P < 0.001). Transmission between tox176 mice was not attributable to any significant difference in the density of Hp1 colonization of the stomachs of tox176 versus normal donors. Our findings lead to the testable hypothesis that the relative hypochlorhydria of young children, and conditions that promote reduced acid production in infected adults (e.g. CAG), represent risk factors for spread of H. pylori.


Assuntos
Infecções por Helicobacter/patologia , Helicobacter pylori/patogenicidade , Células Parietais Gástricas/microbiologia , Células Parietais Gástricas/patologia , Animais , Vida Livre de Germes , Infecções por Helicobacter/etiologia , Infecções por Helicobacter/microbiologia , Infecções por Helicobacter/transmissão , Helicobacter pylori/isolamento & purificação , Camundongos , Camundongos Transgênicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...