Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Sci Rep ; 7(1): 12019, 2017 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-28931911

RESUMO

We characterize the terahertz (THz) magneto-plasmonic response of a cobalt-based periodic aperture array. The bare cobalt surface allows for low loss propagation of surface plasmon-polaritons, as evidenced by comparing the reflection from aperture arrays coated with Au and with Co. When an external magnetic field is applied in a polar Kerr geometry, we observe a maximum polarization rotation of ~0.6° and an ellipticity of ~0.35° from the Co-based array. These values are larger than expected based on existing models that include only interband transitions in ferromagnetic metals. We discuss possible reasons for the difference between experiment and theory.

3.
Sci Rep ; 5: 8637, 2015 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-25727894

RESUMO

Structured metallic patterns are routinely used for a wide variety of applications, ranging from electronic circuits to plasmonics and metamaterials. Numerous techniques have been developed for the fabrication of these devices, in which the metal patterns are typically formed using conventional metals. While this approach has proven very successful, it does generally limit the ability to reconfigure the geometry of the overall device. Here, we demonstrate the ability to create artificially structured metallic devices using liquid metals, in which the configuration can be altered via the electrolysis of saline solutions or deionized water. We accomplish this using an elastomeric mold with two different sets of embedded microfluidic channels that are patterned and injected with EGaIn and water, respectively. The electrochemical reaction is then used to etch the thin oxide layer that forms on eutectic gallium indium (EGaIn) in a controlled reproducible manner. Once the oxide layer is dissolved locally, the underlying liquid metal retracts away from the original position to a position where a new stable oxide layer can reform, which is equivalent to erasing a section of the liquid metal. To allow for full reconfigurability, the entire device can be reset by refilling all of the microchannels with EGaIn.

4.
Opt Express ; 22(4): 4065-74, 2014 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-24663728

RESUMO

We demonstrate a liquid metal-based reconfigurable terahertz (THz) metamaterial device that is not only pressure driven, but also exhibits pressure memory. The discrete THz response is obtained by injecting eutectic gallium indium (EGaIn) into a microfluidic structure that is fabricated in polydimethylsiloxane (PDMS) using conventional soft lithography techniques. The shape of the injected EGaIn is mechanically stabilized by the formation of a thin oxide surface layer that allows the fluid to maintain its configuration within the microchannels despite its high intrinsic surface energy. Although the viscosity of EGaIn is twice that of water, the formation of the surface oxide layer prevents flow into a microchannel unless a critical pressure is exceeded. Using a structure in which the lateral channel dimensions vary, we progressively increase the applied pressure beyond the relevant critical pressure for each section of the device, enabling switching from one geometry to another (split ring resonator to closed ring resonator to an irregular closed ring resonator). As the geometry changes, the transmission spectrum of the device changes dramatically. When the external applied pressure is removed between device geometry changes, the liquid metal morphology remains unchanged, which can be regarded as a form of pressure memory. Once the device is fully filled with liquid metal, it can be erased through the use of mechanical pressure and exposure to acid vapors.

5.
J Phys Condens Matter ; 25(37): 375701, 2013 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-23962954

RESUMO

We studied the pressure-induced superconductivity of BaLi4 up to 53 GPa by means of electrical resistivity in a diamond anvil cell. Superconductivity in BaLi4 is first observed at a pressure of 5.4 GPa with a superconducting critical temperature (Tc) of 4.5 K. Below 2 GPa, superconductivity is not observed above the minimum temperature achievable in the current study, 2 K. Between 5.4 and 12 GPa, the Tc increases steeply to its maximum value of 7 K. Above 12 GPa, the pressure dependence of Tc is complex and the sign of dTc/dP changes several times in going up to the maximum pressure studied, of 53 GPa.


Assuntos
Bário/química , Condutividade Elétrica , Lítio/química , Diamante , Modelos Químicos , Pressão
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...