Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; : e202410509, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38946458

RESUMO

Heavy metal ions and antibiotic contamination have become a major environmental concern worldwide. The development of efficient recognition strategies of these pollutants at ultra-low concentrations in aqueous solutions as well as the elucidation of the intrinsic sensing mechanism are challenging tasks. In this work, unique luminescent Ln-MOF materials (NIIC-3-Ln) were assembled by rational ligand design. Among them, NIIC-3-Tb demonstrated highly selective luminescence quenching response toward Hg2+ and sulfadiazine (SDI) at subnanomolar concentrations in less than 7 s. In addition, a Hg2+ sensing mechanism through chelation was proposed on the basis of single-crystal X-ray diffraction analysis and Hg2+ adsorption study. The interaction mechanism of NIIC-3-Tb with SDI was revealed using a newly developed approach involving a (TD-)DFT based quantification of the charge transfer of a MOF-analyte supramolecular complex model in the ground and excited states. Effect of ultrasonic treatment on the surface morphology important for MOF sensing performance was revealed by gas adsorption experiments. The presented results indicate that NIIC-3-Ln is not only an advanced sensing material for the efficient detection of Hg2+ and SDI at ultra-low concentrations, but also opens up a new approach to study the sensing mechanism at the molecular level at ultra-low concentrations.

2.
Int J Mol Sci ; 25(2)2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38256173

RESUMO

Using gas-phase deposition (Physical Vapor Deposition (PVD) and Metal Organic Chemical Vapor Deposition (MOCVD)) methods, modern implant samples (Ti alloy and CFR-PEEK polymer, 30% carbon fiber) were functionalized with film heterostructures consisting of an iridium or gold sublayer, on the surface of which an antibacterial component (silver) was deposited: Ag/Ir(Au)/Ti(CFR-PEEK). The biocidal effect of the heterostructures was investigated, the effect of the surface relief of the carrier and the metal sublayer on antibacterial activity was established, and the dynamics of silver dissolution was evaluated. It has been shown that the activity of Ag/Ir heterostructures was due to high Ag+ release rates, which led to rapid (2-4 h) inhibition of P. aeruginosa growth. In the case of Ag/Au type heterostructures, the inhibition of the growth of P. aeruginosa and S. aureus occurred more slowly (from 6 h), and the antibacterial activity appeared to be due to the contribution of two agents (Ag+ and Au+ ions). It was found, according to the in vitro cytotoxicity study, that heterostructures did not exhibit toxic effects (cell viability > 95-98%). An in vivo biocompatibility assessment based on the results of a morphohistological study showed that after implantation for a period of 30 days, the samples were characterized by the presence of a thin fibrous capsule without volume thickening and signs of inflammation.


Assuntos
Antineoplásicos , Benzofenonas , Prata , Prata/farmacologia , Staphylococcus aureus , Polímeros/farmacologia , Antibacterianos/farmacologia , Gases
3.
Adv Mater ; 36(19): e2311939, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38275004

RESUMO

Highly selective and sensitive quantitative detection of ofloxacin (OFX) at ultralow concentrations in aqueous media and development of new afterglow materials remains a challenge. Herein, a new 2D water-stable lanthanide metal-organic framework (NIIC-2-Tb) is proposed, which exhibits high selectivity towards OFX through the luminescence quenching with the lowest detection limit (1.1 × 10-9 M) reported to date and a fast response within 6 s. In addition, the luminescent detection of OFX by NIIC-2-Tb is not affected by typical components of blood plasma and urine. The excellent sensing effect of NIIC-2-Tb is further utilized to prepare a composite functional sensing carrageenan hydrogel material for the rapid detection of OFX in meat in real time and the first discovery of impressive afterglow in MOF-based hydrogels. This study not only presents novel Ln-MOF materials and Ln-MOF-based hydrogel films for luminescent sensing of OFX, but also demonstrates color-tunable luminescent films with afterglow, which expands the application of composite luminescent materials for detection and anti-counterfeiting.


Assuntos
Hidrogéis , Estruturas Metalorgânicas , Ofloxacino , Ofloxacino/urina , Ofloxacino/análise , Ofloxacino/sangue , Ofloxacino/química , Estruturas Metalorgânicas/química , Hidrogéis/química , Luminescência , Limite de Detecção , Medições Luminescentes/métodos , Térbio/química , Carragenina/química , Metilgalactosídeos
4.
Angew Chem Int Ed Engl ; 62(35): e202306680, 2023 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-37414736

RESUMO

Solvothermal reaction of 5,5'-(pyridine-2,6-diylbis(oxy))diisophthalic acid (H4 L) with europium(III) or terbium(III) nitrates in acetonitrile-water (1 : 1) at 120 °C gave rise to isostructural 2D coordination polymers, [Ln(HL)(H2 O)3 ]∞ (NIIC-1-Eu and NIIC-1-Tb), the layers of which are composed by eight-coordinated lanthanide(III) ions interconnected by triply deprotonated ligands HL3- . The layers are packed in the crystal without any specific intermolecular interactions between them, allowing the facile preparation of stable water suspensions, in which NIIC-1-Tb exhibited top-performing sensing properties through luminescence quenching effect with exceptionally low detection limits towards Fe3+ (LOD 8.62 nM), ofloxacin (OFX) antibiotic (LOD 3.91 nM) and cotton phytotoxicant gossypol (LOD 2.27 nM). In addition to low detection limit and high selectivity, NIIC-1-Tb features fast sensing response (within 60-90 seconds), making it superior to other MOF-based sensors for metal cations and organic toxicants. The photoluminescence quantum yield of NIIC-1-Tb was 93 %, one of the highest among lanthanide MOFs. Mixed-metal coordination polymers NIIC-1-Eux Tb1-x demonstrated efficient photoluminescence, the color of which could be modulated by the excitation wavelength and time delay for emission monitoring (within 1 millisecond). Furthermore, an original 2D QR-coding scheme was designed for anti-counterfeiting labeling of goods based on unique and tunable emission spectra of NIIC-1-Ln coordination polymers.

5.
Dalton Trans ; 52(25): 8695-8703, 2023 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-37309732

RESUMO

Lanthanide metal-organic frameworks (Ln-MOFs) combine the lanthanide luminescence characteristics and the advantages of porous materials, which can be used in various research fields by exploring their multifunctional properties. A three-dimensional water-stable and high-temperature resistant Eu-MOF [Eu(H2O)(HL)]·0.5MeCN·0.25H2O (H4L = 4-(3,5-dicarboxyphenoxy)isophthalic acid), demonstrating a high photoluminescence quantum yield, was synthesized and structurally characterized. In terms of luminescence, the Eu-MOF exhibits excellent selectivity and quenching sensing for Fe3+ (LOD = 4.32 µM) and ofloxacin, as well as color modulation with Tb3+ and La3+ to develop white LED components with high illumination efficiency (color rendering index, CRI = 90). On the other hand, narrow one-dimensional channels of the Eu-MOF decorated with COOH groups enable a rare reverse adsorption selectivity in a CO2/C2H2 gas mixture. In addition, the protonated carboxyl groups in the Eu-MOF provide an efficient conducting platform for proton transfer with a conductivity value of 8 × 10-4 S cm-1 at 50 °C and RH 100%.

6.
Talanta ; 251: 123792, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-35964517

RESUMO

This article is devoted to a review of studies on the determination of trace elements in germanium and germanium dioxide. For this purpose, methods both with and without preliminary matrix separation procedure have been developed and applied. The advantage of methods without a matrix separation procedure is simple and fast sample preparation, since it does not require specific devices or installations. On the other hand, the limits of detection (LODs) of trace elements remain relatively high, and the germanium matrix effect occurs when attempts are made to lower them. Since germanium and germanium dioxide are currently among the purest substances, the purest germanium containing trace elements at the level of pg g-1 are used for producing nuclear radiation detectors. Therefore, to achieve low LODs for trace elements, a matrix separation procedure is conducted. Another positive point is that preliminary germanium separation leads to a decrease in the matrix effect. In the article the matrix separation procedure performed by various methods is considered. These procedures can be classified into open, closed or flow kinds, depending on the type of installation. Germanium is usually separated in the form of tetrahalide, most commonly, tetrachloride. For the determination of trace elements in germanium and germanium dioxide, single element methods (atomic absorption spectrometry) and multielement methods (atomic emission spectrometry, mass-spectrometry, neutron activation analysis) are used. In this article, these methods are compared in terms of the number of elements determined and the LODs.


Assuntos
Germânio , Oligoelementos , Limite de Detecção , Espectrofotometria Atômica/métodos , Oligoelementos/análise
7.
Biomedicines ; 10(9)2022 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-36140329

RESUMO

This paper presents pioneering results on the evaluation of noble metal film hetero-structures to improve some functional characteristics of carbon-based implant materials: carbon-composite material (CCM) and carbon-fiber-reinforced polyetheretherketone (CFR-PEEK). Metal-organic chemical vapor deposition (MOCVD) was successfully applied to the deposition of Ir, Pt, and PtIr films on these carriers. A noble metal layer as thin as 1 µm provided clear X-ray imaging of 1−2.5 mm thick CFR-PEEK samples. The coated and pristine CCM and CFR-PEEK samples were further surface-modified with Au and Ag nanoparticles (NPs) through MOCVD and physical vapor deposition (PVD) processes, respectively. The composition and microstructural features, the NPs sizes, and surface concentrations were determined. In vitro biological studies included tests for cytotoxicity and antibacterial properties. A series of samples were selected for subcutaneous implantation in rats (up to 3 months) and histological studies. The bimetallic PtIr-based heterostructures showed no cytotoxicity in vitro, but were less biocompatible due to a dense two-layered fibrous capsule. AuNP heterostructures on CFR-PEEK promoted cell proliferation in vitro and exhibited a strong inhibition of bacterial growth (p < 0.05) and high in vitro biocompatibility, especially Au/Ir structures. AgNP heterostructures showed a more pronounced antibacterial effect, while their in vivo biocompatibility was better than that of the pristine CFR-PEEK, but worse than that of AuNP heterostructures.

8.
Biology (Basel) ; 10(11)2021 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-34827117

RESUMO

(1) Background: Developments in accelerator-based neutron sources moved boron neutron capture therapy (BNCT) to the next phase, where new neutron radiation parameters had to be studied for the treatment of cancers, including brain tumors. We aimed to further improve accelerator-BNCT efficacy by optimizing dosimetry control, beam parameters, and combinations of boronophenylalanine (BPA) and sodium borocaptate (BSH) administration in U87MG xenograft-bearing immunodeficient mice with two different tumor locations. (2) Methods: The study included two sets of experiments. In Experiment #1, BPA only and single or double irradiation in higher doses were used, while, in Experiment #2, BPA and BSH combinations and single or double irradiation with dosage adjustment were analyzed. Mice without treatment or irradiation after BPA or BPA+BSH injection were used as controls. (3) Results: Irradiation parameter adjustment and BPA and BSH combination led to 80-83% tumor-growth inhibition index scores, irradiation:BNCT ratios of 1:2, and increases in animal life expectancy from 9 to 107 days. (4) Conclusions: Adjustments in dosimetry control, calculation of irradiation doses, and combined use of two 10B compounds allowed for BNCT optimization that will be useful in the development of clinical-trial protocols for accelerator-based BNCT.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...