Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant J ; 89(6): 1093-1105, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28029738

RESUMO

Roots provide essential uptake of water and nutrients from the soil, as well as anchorage and stability for the whole plant. Root orientation, or angle, is an important component of the overall architecture and depth of the root system; however, little is known about the genetic control of this trait. Recent reports in Oryza sativa (rice) identified a role for DEEPER ROOTING 1 (DRO1) in influencing the orientation of the root system, leading to positive changes in grain yields under water-limited conditions. Here we found that DRO1 and DRO1-related genes are present across diverse plant phyla, and fall within the IGT gene family. The IGT family also includes TAC1 and LAZY1, which are known to affect the orientation of lateral shoots. Consistent with a potential role in root development, DRO1 homologs in Arabidopsis and peach showed root-specific expression. Promoter-reporter constructs revealed that AtDRO1 is predominantly expressed in both the root vasculature and root tips, in a distinct developmental pattern. Mutation of AtDRO1 led to more horizontal lateral root angles. Overexpression of AtDRO1 under a constitutive promoter resulted in steeper lateral root angles, as well as shoot phenotypes including upward leaf curling, shortened siliques and narrow lateral branch angles. A conserved C-terminal EAR-like motif found in IGT genes was required for these ectopic phenotypes. Overexpression of PpeDRO1 in Prunus domestica (plum) led to deeper-rooting phenotypes. Collectively, these data indicate a potential application for DRO1-related genes to alter root architecture for drought avoidance and improved resource use.


Assuntos
Arabidopsis/metabolismo , Proteínas de Plantas/metabolismo , Raízes de Plantas/metabolismo , Regiões Promotoras Genéticas/genética , Prunus/metabolismo , Arabidopsis/genética , Arabidopsis/fisiologia , Gravitropismo/genética , Gravitropismo/fisiologia , Proteínas de Plantas/genética , Raízes de Plantas/genética , Raízes de Plantas/fisiologia , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Plantas Geneticamente Modificadas/metabolismo , Prunus/genética , Prunus/fisiologia
2.
Bio Protoc ; 6(15)2016 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-29725609

RESUMO

An emerging theme in biology is the importance of cellular signaling dynamics. In addition to monitoring changes in absolute abundance of signaling molecules, many signal transduction pathways are sensitive to changes in temporal properties of signaling components (Purvis and Lahav, 2013). The phytohormone auxin regulates myriad processes in plant development. Many of these require the nuclear auxin signaling pathway, in which degradation of the Aux/IAA repressor proteins allows for transcription of auxin-responsive genes (Korasick et al., 2015). Using a heterologous yeast system, we found that Aux/IAAs exhibit a range of auxin-induced degradation rates when co-expressed in isolation with F-box proteins (Havens et al., 2012). Subsequent studies connecting signaling dynamics to plant growth and development confirmed that Aux/IAAs show similar differences in plants (Guseman et al., 2015; Moss et al., 2015). Here, we describe in detail the use of a heat-shock-inducible fluorescence degradation system to capture Aux/IAA degradation in real time in live plant roots. By employing this method, we were able to obtain high Aux/IAA expression and avoid the dampening long term effects of turnover, feedback and silencing. Degradation was dependent on the presence of an Aux/IAA degron and rates increased in response to exogenous auxin.

3.
Plant Physiol ; 169(1): 803-13, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26149575

RESUMO

Ubiquitin-mediated protein degradation is a common feature in diverse plant cell signaling pathways; however, the factors that control the dynamics of regulated protein turnover are largely unknown. One of the best-characterized families of E3 ubiquitin ligases facilitates ubiquitination of auxin (aux)/indole-3-acetic acid (IAA) repressor proteins in the presence of auxin. Rates of auxin-induced degradation vary widely within the Aux/IAA family, and sequences outside of the characterized degron (the minimum region required for auxin-induced degradation) can accelerate or decelerate degradation. We have used synthetic auxin degradation assays in yeast (Saccharomyces cerevisiae) and in plants to characterize motifs flanking the degron that contribute to tuning the dynamics of Aux/IAA degradation. The presence of these rate motifs is conserved in phylogenetically distant members of the Arabidopsis (Arabidopsis thaliana) Aux/IAA family, as well as in their putative Brassica rapa orthologs. We found that rate motifs can act by enhancing interaction between repressors and the E3, but that this is not the only mechanism of action. Phenotypes of transgenic plants expressing a deletion in a rate motif in IAA28 resembled plants expressing degron mutations, underscoring the functional relevance of Aux/IAA degradation dynamics in regulating auxin responses.


Assuntos
Ácidos Indolacéticos/metabolismo , Proteínas de Plantas/química , Proteólise , Motivos de Aminoácidos , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/metabolismo , Ligação Proteica , Estrutura Terciária de Proteína
4.
Development ; 142(5): 905-9, 2015 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-25633353

RESUMO

Auxin elicits diverse cell behaviors through a simple nuclear signaling pathway initiated by degradation of Aux/IAA co-repressors. Our previous work revealed that members of the large Arabidopsis Aux/IAA family exhibit a range of degradation rates in synthetic contexts. However, it remained an unresolved issue whether differences in Aux/IAA turnover rates played a significant role in plant responses to auxin. Here, we use the well-established model of lateral root development to directly test the hypothesis that the rate of auxin-induced Aux/IAA turnover sets the pace for auxin-regulated developmental events. We did this by generating transgenic plants expressing degradation rate variants of IAA14, a crucial determinant of lateral root initiation. Progression through the well-established stages of lateral root development was strongly correlated with the engineered rates of IAA14 turnover, leading to the conclusion that Aux/IAAs are auxin-initiated timers that synchronize developmental transitions.


Assuntos
Arabidopsis/efeitos dos fármacos , Arabidopsis/crescimento & desenvolvimento , Ácidos Indolacéticos/farmacologia , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Reguladores de Crescimento de Plantas/metabolismo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/crescimento & desenvolvimento , Saccharomyces cerevisiae/metabolismo
5.
Plant Physiol ; 160(1): 135-42, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22843664

RESUMO

Explaining how the small molecule auxin triggers diverse yet specific responses is a long-standing challenge in plant biology. An essential step in auxin response is the degradation of Auxin/Indole-3-Acetic Acid (Aux/IAA, referred to hereafter as IAA) repressor proteins through interaction with auxin receptors. To systematically characterize diversity in degradation behaviors among IAA|receptor pairs, we engineered auxin-induced degradation of plant IAA proteins in yeast (Saccharomyces cerevisiae). We found that IAA degradation dynamics vary widely, depending on which receptor is present, and are not encoded solely by the degron-containing domain II. To facilitate this and future studies, we identified a mathematical model able to quantitatively describe IAA degradation behavior in a single parameter. Together, our results demonstrate the remarkable tunability conferred by specific configurations of the auxin response pathway.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas F-Box/metabolismo , Ácidos Indolacéticos/metabolismo , Receptores de Superfície Celular/metabolismo , Transdução de Sinais , Arabidopsis/efeitos dos fármacos , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas F-Box/genética , Citometria de Fluxo , Meia-Vida , Ácidos Indolacéticos/farmacologia , Modelos Biológicos , Reguladores de Crescimento de Plantas/metabolismo , Plantas Geneticamente Modificadas/efeitos dos fármacos , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Estrutura Terciária de Proteína , Proteólise , Receptores de Superfície Celular/genética , Proteínas Repressoras/metabolismo , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Especificidade da Espécie , Fatores de Tempo , Transformação Genética , Ubiquitinação
6.
Arabidopsis Book ; 10: e0147, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22582028

RESUMO

As photoautotrophs, plants are exquisitely sensitive to their light environment. Light affects many developmental and physiological responses throughout plants' life histories. The focus of this chapter is on light effects during the crucial period of time between seed germination and the development of the first true leaves. During this time, the seedling must determine the appropriate mode of action to best achieve photosynthetic and eventual reproductive success. Light exposure triggers several major developmental and physiological events. These include: growth inhibition and differentiation of the embryonic stem (hypocotyl); maturation of the embryonic leaves (cotyledons); and establishment and activation of the stem cell population in the shoot and root apical meristems. Recent studies have linked a number of photoreceptors, transcription factors, and phytohormones to each of these events.

7.
Development ; 137(10): 1731-41, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20430748

RESUMO

Patterning of stomata, valves on the plant epidermis, requires the orchestrated actions of signaling components and cell-fate determinants. To understand the regulation of stomatal patterning, we performed a genetic screen using a background that partially lacks stomatal signaling receptors. Here, we report the isolation and characterization of chorus (chor), which confers excessive proliferation of stomatal-lineage cells mediated by SPEECHLESS (SPCH). chor breaks redundancy among three ERECTA family genes and strongly enhances stomatal patterning defects caused by loss-of-function in TOO MANY MOUTHS. chor seedlings also exhibit incomplete cytokinesis and growth defects, including disruptions in root tissue patterning and root hair cell morphogenesis. CHOR encodes a putative callose synthase, GLUCAN SYNTHASE-LIKE 8 (GSL8), that is required for callose deposition at the cell plate, cell wall and plasmodesmata. Consistently, symplastic macromolecular diffusion between epidermal cells is significantly increased in chor, and proteins that do not normally move cell-to-cell, including a fluorescent protein-tagged SPCH, diffuse to neighboring cells. Such a phenotype is not a general trait caused by cytokinesis defects. Our findings suggest that the restriction of symplastic movement might be an essential step for the proper segregation of cell-fate determinants during stomatal development.


Assuntos
Proteínas de Arabidopsis/fisiologia , Arabidopsis , Padronização Corporal/genética , Comunicação Celular/genética , Glucosiltransferases/genética , Glucosiltransferases/fisiologia , Mutação de Sentido Incorreto/fisiologia , Estômatos de Plantas/embriologia , Arabidopsis/embriologia , Arabidopsis/enzimologia , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Divisão Celular/genética , Linhagem da Célula/genética , Desenvolvimento Embrionário/genética , Desenvolvimento Embrionário/fisiologia , Plantas Geneticamente Modificadas , Sementes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...