Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Electrophoresis ; 39(9-10): 1190-1200, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29389018

RESUMO

Tyrosine (Tyr) residues of the major pollen allergen of birch Betula verrucosa, Bet v 1a, were nitrated by peroxynitrite. This modification enhances the allergenicity. Modified tyrosines were identified by analyzing intact allergen variants in combination with top-down and bottom-up approaches. Therefore, a laboratory-built sheath-liquid assisted ESI interface was applied for hyphenation of CE to an Orbitrap mass spectrometer to localize individual nitration sites. The major focus was on identification of primary nitration sites. The top-down approach unambiguously identified Tyr 5 as the most prominent modification site. Fragments from the allergen core and the C-terminal part carried up to three potential nitration sites, respectively. Thus, a bottom-up approach with tryptic digest was used as a complementary strategy which allowed for the unambiguous localization of nitration sites within the respective peptides. Nitration propensity for individual Tyr residues was addressed by comparison of MS signals of nitrated peptides relative to all cognates of homolog primary sequence. Combined data identified surface exposed Tyr 5 and Tyr 66 as major nitration sites followed by less accessible Tyr 158 whereas Tyr 81, 83 and 150 possess a lower nitration tendency and are apparently modified in variants with higher nitration levels.


Assuntos
Alérgenos/análise , Antígenos de Plantas/análise , Betula/química , Eletroforese Capilar/métodos , Pólen/química , Espectrometria de Massas por Ionização por Electrospray/métodos , Alérgenos/imunologia , Antígenos de Plantas/imunologia , Betula/imunologia , Nitratos/química , Pólen/imunologia
2.
Bioconjug Chem ; 24(10): 1656-68, 2013 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-23978112

RESUMO

Label-free biosensors detect binding of prey molecules (″analytes″) to immobile bait molecules on the sensing surface. Numerous methods are available for immobilization of bait molecules. A convenient option is binding of biotinylated bait molecules to streptavidin-functionalized surfaces, or to biotinylated surfaces via biotin-avidin-biotin bridges. The goal of this study was to find a rapid method for reversible immobilization of biotinylated bait molecules on biotinylated sensor chips. The task was to establish a biotin-avidin-biotin bridge which was easily cleaved when desired, yet perfectly stable under a wide range of measurement conditions. The problem was solved with the avidin mutant M96H which contains extra histidine residues at the subunit-subunit interfaces. This mutant was bound to a mixed self-assembled monolayer (SAM) containing biotin residues on 20% of the oligo(ethylene glycol)-terminated SAM components. Various biotinylated bait molecules were bound on top of the immobilized avidin mutant. The biotin-avidin-biotin bridge was stable at pH ≥3, and it was insensitive to sodium dodecyl sulfate (SDS) at neutral pH. Only the combination of citric acid (2.5%, pH 2) and SDS (0.25%) caused instantaneous cleavage of the biotin-avidin-biotin bridge. As a consequence, the biotinylated bait molecules could be immobilized and removed as often as desired, the only limit being the time span for reproducible chip function when kept in buffer (2-3 weeks at 25 °C). As expected, the high isolectric pH (pI) of the avidin mutant caused nonspecific adsorption of proteins. This problem was solved by acetylation of avidin (to pI < 5), or by optimization of SAM formation and passivation with biotin-BSA and BSA.


Assuntos
Avidina/química , Biotina/química , Proteínas Imobilizadas/química , Animais , Avidina/genética , Técnicas Biossensoriais/instrumentação , Biotinilação , Proteínas Imobilizadas/genética , Mutação Puntual , Propriedades de Superfície
3.
Electrophoresis ; 34(18): 2695-704, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23857337

RESUMO

A CZE-ESI-TOF MS method has been optimized for the separation and identification of nitrated variants of the major birch pollen allergen from Betula verrucosa, isoform 1a (Bet v 1a). In-house nitration of recombinant Bet v 1a was done by peroxynitrite. As a BGE, 10 mmol/L ammonium bicarbonate with pH 7.50 provided best resolution. Nebulizer gas pressure and sheath liquid flow rate of 0.4 bar and 6 µL/min, respectively, maintained CZE selectivity and constituted stable electrospray conditions. A sheath liquid composition of 75% v/v methanol with 0.1% v/v formic acid in ultrapure water resulted in highest signal intensities. Alternatively, methanol could be replaced by 50% v/v isopropanol. Two modified allergen products derived from reaction mixtures that contained different amounts of the nitration reagent were compared by the elaborated CZE-ESI-TOF MS method. Up to twelve different Bet v 1a variants with one- to sixfold nitration could be distinguished. Several allergen fractions of equivalent nitration grade were resolved. Their different migration times indicate site-specific nitration with concomitant differences in pI and maybe also in hydrodynamic radius. The method allows for a characterization of in-house nitrated allergen samples that are intended for testing the postulated enhanced allergenicity of nitrated Bet v 1a variants.


Assuntos
Alérgenos/química , Betula/química , Nitratos/análise , Proteínas de Plantas/análise , Pólen/química , Eletroforese Capilar/métodos , Concentração de Íons de Hidrogênio , Peso Molecular , Nebulizadores e Vaporizadores , Nitratos/química , Proteínas de Plantas/química , Isoformas de Proteínas/análise , Isoformas de Proteínas/química , Espectrometria de Massas por Ionização por Electrospray/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...