Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Physiol ; 592(17): 3859-80, 2014 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-25015920

RESUMO

Controlled mechanical ventilation (CMV) plays a key role in triggering the impaired diaphragm muscle function and the concomitant delayed weaning from the respirator in critically ill intensive care unit (ICU) patients. To date, experimental and clinical studies have primarily focused on early effects on the diaphragm by CMV, or at specific time points. To improve our understanding of the mechanisms underlying the impaired diaphragm muscle function in response to mechanical ventilation, we have performed time-resolved analyses between 6 h and 14 days using an experimental rat ICU model allowing detailed studies of the diaphragm in response to long-term CMV. A rapid and early decline in maximum muscle fibre force and preceding muscle fibre atrophy was observed in the diaphragm in response to CMV, resulting in an 85% reduction in residual diaphragm fibre function after 9-14 days of CMV. A modest loss of contractile proteins was observed and linked to an early activation of the ubiquitin proteasome pathway, myosin:actin ratios were not affected and the transcriptional regulation of myosin isoforms did not show any dramatic changes during the observation period. Furthermore, small angle X-ray diffraction analyses demonstrate that myosin can bind to actin in an ATP-dependent manner even after 9-14 days of exposure to CMV. Thus, quantitative changes in muscle fibre size and contractile proteins are not the dominating factors underlying the dramatic decline in diaphragm muscle function in response to CMV, in contrast to earlier observations in limb muscles. The observed early loss of subsarcolemmal neuronal nitric oxide synthase activity, onset of oxidative stress, intracellular lipid accumulation and post-translational protein modifications strongly argue for significant qualitative changes in contractile proteins causing the severely impaired residual function in diaphragm fibres after long-term mechanical ventilation. For the first time, the present study demonstrates novel changes in the diaphragm structure/function and underlying mechanisms at the gene, protein and cellular levels in response to CMV at a high temporal resolution ranging from 6 h to 14 days.


Assuntos
Diafragma/fisiopatologia , Contração Muscular , Fibras Musculares Esqueléticas/metabolismo , Ventilação Pulmonar , Ventiladores Mecânicos/efeitos adversos , Actinas/genética , Actinas/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Diafragma/citologia , Diafragma/metabolismo , Feminino , Metabolismo dos Lipídeos , Fibras Musculares Esqueléticas/fisiologia , Força Muscular , Miosinas/genética , Miosinas/metabolismo , Óxido Nítrico Sintase Tipo I/genética , Óxido Nítrico Sintase Tipo I/metabolismo , Estresse Oxidativo , Complexo de Endopeptidases do Proteassoma/metabolismo , Ratos , Ratos Sprague-Dawley , Fatores de Tempo
2.
Appl Environ Microbiol ; 66(1): 401-5, 2000 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-10618254

RESUMO

Using a luxAB reporter transposon, seven mutants of Sinorhizobium meliloti were identified as containing insertions in four cold shock loci. LuxAB activity was strongly induced (25- to 160-fold) after a temperature shift from 30 to 15 degrees C. The transposon and flanking host DNA from each mutant was cloned, and the nucleic acid sequence of the insertion site was determined. Unexpectedly, five of the seven luxAB mutants contained transposon insertions in the 16S and 23S rRNA genes of two of the three rrn operons of S. meliloti. Directed insertion of luxAB genes into each of the three rrn operons revealed that all three operons were similarly affected by cold shock. Two other insertions were found to be located downstream of a homolog of the major Escherichia coli cold shock gene, cspA. Although the cold shock loci were highly induced in response to a shift to low temperature, none of the insertions resulted in a statistically significant decrease in growth rate at 15 degrees C.


Assuntos
Proteínas de Bactérias/genética , Elementos de DNA Transponíveis , Genes Reporter/genética , Luciferases/genética , Sinorhizobium meliloti/genética , Proteínas de Bactérias/metabolismo , Temperatura Baixa , Luciferases/metabolismo , Mutagênese Insercional , RNA Ribossômico 16S/genética , RNA Ribossômico 23S/genética , Sinorhizobium meliloti/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...