Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Neurosurg Pediatr ; : 1-6, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38905707

RESUMO

OBJECTIVE: Occurring once in every 2000 live births, craniosynostosis (CS) is the most frequent cranial birth defect. Although the genetic etiologies of syndromic CS cases are well defined, the genetic cause of most nonsyndromic cases remains unknown. METHODS: The authors analyzed exome or RNA sequencing data from 876 children with nonsyndromic CS, including 291 case-parent trios and 585 additional probands. The authors also utilized the GeneMatcher platform and the Gabriella Miller Kids First genome sequencing project to identify additional CS patients with AXIN1 mutations. RESULTS: The authors describe 11 patients with nonsyndromic CS harboring rare, damaging mutations in AXIN1, an inhibitor of Wnt signaling. AXIN1 regulates signaling upstream of key mediators of osteoblast differentiation. Three of the 6 mutations identified in trios occurred de novo in the proband, while 3 were transmitted from unaffected parents. Patients with nonsyndromic CS were highly enriched for mutations in AXIN1 compared to both expectation (p = 0.0008) and exome sequencing data from > 76,000 healthy controls (p = 2.3 × 10-6), surpassing the thresholds for genome-wide significance. CONCLUSIONS: These findings describe the first phenotype associated with mutations in AXIN1, with mutations identified in approximately 1% of nonsyndromic CS cases. The results strengthen the existing link between Wnt signaling and maintenance of cranial suture patency and have implications for genetic testing in families with CS.

2.
medRxiv ; 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38496498

RESUMO

Less than half of individuals with a suspected Mendelian condition receive a precise molecular diagnosis after comprehensive clinical genetic testing. Improvements in data quality and costs have heightened interest in using long-read sequencing (LRS) to streamline clinical genomic testing, but the absence of control datasets for variant filtering and prioritization has made tertiary analysis of LRS data challenging. To address this, the 1000 Genomes Project ONT Sequencing Consortium aims to generate LRS data from at least 800 of the 1000 Genomes Project samples. Our goal is to use LRS to identify a broader spectrum of variation so we may improve our understanding of normal patterns of human variation. Here, we present data from analysis of the first 100 samples, representing all 5 superpopulations and 19 subpopulations. These samples, sequenced to an average depth of coverage of 37x and sequence read N50 of 54 kbp, have high concordance with previous studies for identifying single nucleotide and indel variants outside of homopolymer regions. Using multiple structural variant (SV) callers, we identify an average of 24,543 high-confidence SVs per genome, including shared and private SVs likely to disrupt gene function as well as pathogenic expansions within disease-associated repeats that were not detected using short reads. Evaluation of methylation signatures revealed expected patterns at known imprinted loci, samples with skewed X-inactivation patterns, and novel differentially methylated regions. All raw sequencing data, processed data, and summary statistics are publicly available, providing a valuable resource for the clinical genetics community to discover pathogenic SVs.

3.
Proc Natl Acad Sci U S A ; 120(16): e2120826120, 2023 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-37040407

RESUMO

In newborn humans, and up to approximately 2 y of age, calvarial bone defects can naturally regenerate. This remarkable regeneration potential is also found in newborn mice and is absent in adult mice. Since previous studies showed that the mouse calvarial sutures are reservoirs of calvarial skeletal stem cells (cSSCs), which are the cells responsible for calvarial bone regeneration, here we hypothesized that the regenerative potential of the newborn mouse calvaria is due to a significant amount of cSSCs present in the newborn expanding sutures. Thus, we tested whether such regenerative potential can be reverse engineered in adult mice by artificially inducing an increase of the cSSCs resident within the adult calvarial sutures. First, we analyzed the cellular composition of the calvarial sutures in newborn and in older mice, up to 14-mo-old mice, showing that the sutures of the younger mice are enriched in cSSCs. Then, we demonstrated that a controlled mechanical expansion of the functionally closed sagittal sutures of adult mice induces a significant increase of the cSSCs. Finally, we showed that if a calvarial critical size bone defect is created simultaneously to the mechanical expansion of the sagittal suture, it fully regenerates without the need for additional therapeutic aids. Using a genetic blockade system, we further demonstrate that this endogenous regeneration is mediated by the canonical Wnt signaling. This study shows that controlled mechanical forces can harness the cSSCs and induce calvarial bone regeneration. Similar harnessing strategies may be used to develop novel and more effective bone regeneration autotherapies.


Assuntos
Regeneração Óssea , Suturas Cranianas , Humanos , Adulto , Camundongos , Animais , Células-Tronco , Proliferação de Células , Suturas
4.
Int J Mol Sci ; 24(6)2023 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-36982425

RESUMO

Craniosynostosis is a birth defect where calvarial sutures close prematurely, as part of a genetic syndrome or independently, with unknown cause. This study aimed to identify differences in gene expression in primary calvarial cell lines derived from patients with four phenotypes of single-suture craniosynostosis, compared to controls. Calvarial bone samples (N = 388 cases/85 controls) were collected from clinical sites during reconstructive skull surgery. Primary cell lines were then derived from the tissue and used for RNA sequencing. Linear models were fit to estimate covariate adjusted associations between gene expression and four phenotypes of single-suture craniosynostosis (lambdoid, metopic, sagittal, and coronal), compared to controls. Sex-stratified analysis was also performed for each phenotype. Differentially expressed genes (DEGs) included 72 genes associated with coronal, 90 genes associated with sagittal, 103 genes associated with metopic, and 33 genes associated with lambdoid craniosynostosis. The sex-stratified analysis revealed more DEGs in males (98) than females (4). There were 16 DEGs that were homeobox (HOX) genes. Three TFs (SUZ12, EZH2, AR) significantly regulated expression of DEGs in one or more phenotypes. Pathway analysis identified four KEGG pathways associated with at least one phenotype of craniosynostosis. Together, this work suggests unique molecular mechanisms related to craniosynostosis phenotype and fetal sex.


Assuntos
Suturas Cranianas , Craniossinostoses , Masculino , Feminino , Humanos , Suturas Cranianas/anormalidades , Transcriptoma , Craniossinostoses/genética , Crânio , Suturas
5.
Genet Med ; 25(1): 143-150, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36260083

RESUMO

PURPOSE: Craniofacial microsomia (CFM) represents a spectrum of craniofacial malformations, ranging from isolated microtia with or without aural atresia to underdevelopment of the mandible, maxilla, orbit, facial soft tissue, and/or facial nerve. The genetic causes of CFM remain largely unknown. METHODS: We performed genome sequencing and linkage analysis in patients and families with microtia and CFM of unknown genetic etiology. The functional consequences of damaging missense variants were evaluated through expression of wild-type and mutant proteins in vitro. RESULTS: We studied a 5-generation kindred with microtia, identifying a missense variant in FOXI3 (p.Arg236Trp) as the cause of disease (logarithm of the odds = 3.33). We subsequently identified 6 individuals from 3 additional kindreds with microtia-CFM spectrum phenotypes harboring damaging variants in FOXI3, a regulator of ectodermal and neural crest development. Missense variants in the nuclear localization sequence were identified in cases with isolated microtia with aural atresia and found to affect subcellular localization of FOXI3. Loss of function variants were found in patients with microtia and mandibular hypoplasia (CFM), suggesting dosage sensitivity of FOXI3. CONCLUSION: Damaging variants in FOXI3 are the second most frequent genetic cause of CFM, causing 1% of all cases, including 13% of familial cases in our cohort.


Assuntos
Microtia Congênita , Síndrome de Goldenhar , Micrognatismo , Humanos , Síndrome de Goldenhar/genética , Microtia Congênita/genética , Orelha/anormalidades , Face
6.
Case Rep Genet ; 2022: 3239260, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35378950

RESUMO

Craniosynostosis, the premature fusion of the calvarial bones, has numerous etiologies. Among them, several involve mutations in genes related to the TGFb signaling pathway, a critical molecular mediator of human development. These TGFb pathway-associated craniosynostosis syndromes include Loeys-Dietz syndrome (LDS) and Shprintzen-Goldberg syndrome (SGS). LDS and SGS have many similarities common to fibrillinopathies, specifically Marfan syndrome (MFS), which is caused by mutations in FBN1. Historically discriminating features of MFS from LDS and SGS are (1) the presence of ectopia lentis (the subluxation/dislocation of the ocular lens) and (2) the absence of craniosynostosis. Curiously, several instances of a seemingly novel syndrome involving only craniosynostosis and ectopia lentis have recently been reported to be caused by recessive mutations in ADAMTSL4, a poorly characterized gene as of yet. Here, we report on two new cases of craniosynostosis with ectopia lentis, each harboring recessive mutations in ADAMTSL4. We also discuss a proposed mechanism for the relationship between ADAMTSL4, FBN1, and TGFb pathway-related syndromes.

7.
J Med Genet ; 59(2): 165-169, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-33436522

RESUMO

BACKGROUND: Pathogenic heterozygous SIX1 variants (predominantly missense) occur in branchio-otic syndrome (BOS), but an association with craniosynostosis has not been reported. METHODS: We investigated probands with craniosynostosis of unknown cause using whole exome/genome (n=628) or RNA (n=386) sequencing, and performed targeted resequencing of SIX1 in 615 additional patients. Expression of SIX1 protein in embryonic cranial sutures was examined in the Six1nLacZ/+ reporter mouse. RESULTS: From 1629 unrelated cases with craniosynostosis we identified seven different SIX1 variants (three missense, including two de novo mutations, and four nonsense, one of which was also present in an affected twin). Compared with population data, enrichment of SIX1 loss-of-function variants was highly significant (p=0.00003). All individuals with craniosynostosis had sagittal suture fusion; additionally four had bilambdoid synostosis. Associated BOS features were often attenuated; some carrier relatives appeared non-penetrant. SIX1 is expressed in a layer basal to the calvaria, likely corresponding to the dura mater, and in the mid-sagittal mesenchyme. CONCLUSION: Craniosynostosis is associated with heterozygous SIX1 variants, with possible enrichment of loss-of-function variants compared with classical BOS. We recommend screening of SIX1 in craniosynostosis, particularly when sagittal±lambdoid synostosis and/or any BOS phenotypes are present. These findings highlight the role of SIX1 in cranial suture homeostasis.


Assuntos
Craniossinostoses/genética , Proteínas de Homeodomínio/genética , Animais , Pré-Escolar , Estudos de Coortes , Suturas Cranianas/embriologia , Suturas Cranianas/patologia , Craniossinostoses/complicações , Craniossinostoses/embriologia , Análise Mutacional de DNA , Estudos de Associação Genética , Proteínas de Homeodomínio/fisiologia , Humanos , Lactente , Camundongos , Linhagem , Fenótipo , RNA-Seq , Sequenciamento Completo do Genoma
8.
Nat Commun ; 12(1): 4680, 2021 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-34344887

RESUMO

Craniofacial microsomia (CFM) is the second most common congenital facial anomaly, yet its genetic etiology remains unknown. We perform whole-exome or genome sequencing of 146 kindreds with sporadic (n = 138) or familial (n = 8) CFM, identifying a highly significant burden of loss of function variants in SF3B2 (P = 3.8 × 10-10), a component of the U2 small nuclear ribonucleoprotein complex, in probands. We describe twenty individuals from seven kindreds harboring de novo or transmitted haploinsufficient variants in SF3B2. Probands display mandibular hypoplasia, microtia, facial and preauricular tags, epibulbar dermoids, lateral oral clefts in addition to skeletal and cardiac abnormalities. Targeted morpholino knockdown of SF3B2 in Xenopus results in disruption of cranial neural crest precursor formation and subsequent craniofacial cartilage defects, supporting a link between spliceosome mutations and impaired neural crest development in congenital craniofacial disease. The results establish haploinsufficient variants in SF3B2 as the most prevalent genetic cause of CFM, explaining ~3% of sporadic and ~25% of familial cases.


Assuntos
Síndrome de Goldenhar/genética , Haploinsuficiência , Fatores de Processamento de RNA/genética , Adolescente , Adulto , Animais , Criança , Exoma/genética , Feminino , Estudos de Associação Genética , Síndrome de Goldenhar/patologia , Humanos , Lactente , Masculino , Mutação , Crista Neural/crescimento & desenvolvimento , Crista Neural/patologia , Linhagem , Spliceossomos/genética , Xenopus laevis
9.
Mol Genet Genomic Med ; 8(10): e1401, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32871052

RESUMO

BACKGROUND: Craniofacial microsomia (CFM), also known as the oculo-auriculo-vertebral spectrum, comprises a variable phenotype with the most common features including microtia and mandibular hypoplasia on one or both sides, in addition to lateral oral clefts, epibulbar dermoids, cardiac, vertebral, and renal abnormalities. The etiology of CFM is largely unknown. The MYT1 gene has been reported as a candidate based in mutations found in three unrelated individuals. Additional patients with mutations in this gene are required to establish its causality. We present two individuals with CFM that have rare variants in MYT1 contributing to better understand the genotype and phenotype associated with mutations in this gene. METHODS/RESULTS: We conducted genetic analysis using whole-exome and -genome sequencing in 128 trios with CFM. Two novel MYT1 mutations were identified in two participants. Sanger sequencing was used to confirm these mutations. CONCLUSION: We identified two additional individuals with CFM who carry rare variants in MYT1, further supporting the presumptive role of this gene in the CFM spectrum.


Assuntos
Microtia Congênita/genética , Proteínas de Ligação a DNA/genética , Síndrome de Goldenhar/genética , Fatores de Transcrição/genética , Criança , Microtia Congênita/patologia , Feminino , Síndrome de Goldenhar/patologia , Humanos , Masculino , Mutação , Síndrome
10.
PLoS One ; 14(8): e0221402, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31442251

RESUMO

Craniosynostosis is the premature fusion of the sutures of the calvaria and is principally designated as being either syndromic (demonstrating characteristic extracranial malformations) or non-syndromic. While many forms of syndromic craniosynostosis are known to be caused by specific mutations, the genetic etiology of non-syndromic, single-suture craniosynostosis (SSC) is poorly understood. Based on the low recurrence rate (4-7%) and the fact that recurrent mutations have not been identified for most cases of SSC, we propose that some cases of isolated, single suture craniosynostosis may be polygenic. Previous work in our lab identified a disproportionately high number of rare and novel gain-of-function IGF1R variants in patients with SSC as compared to controls. Building upon this result, we used expression array data from calvarial osteoblasts isolated from infants with and without SSC to ascertain correlations between high IGF1 expression and expression of other osteogenic genes of interest. We identified a positive correlation between increased expression of IGF1 and RUNX2, a gene known to cause SSC with increased gene dosage. Subsequent phosphorylation assays revealed that osteoblast cell lines from cases with high IGF1 expression demonstrated inhibition of GSK3ß, a serine/threonine kinase known to inhibit RUNX2, thus activating osteogenesis through the IRS1-mediated Akt pathway. With these findings, we have utilized established mouse strains to examine a novel model of polygenic inheritance (a phenotype influenced by more than one gene) of SSC. Compound heterozygous mice with selective disinhibition of RUNX2 and either overexpression of IGF1 or loss of function of GSK3ß demonstrated an increase in the frequency and severity of synostosis as compared to mice with the RUNX2 disinhibition alone. These polygenic mouse models reinforce, in-vivo, that the combination of activation of the IGF1 pathway and disinhibition of the RUNX2 pathway leads to an increased risk of developing craniosynostosis and serves as a model of human SSC.


Assuntos
Subunidade alfa 1 de Fator de Ligação ao Core/genética , Craniossinostoses/genética , Glicogênio Sintase Quinase 3 beta/genética , Fator de Crescimento Insulin-Like I/genética , Animais , Diferenciação Celular/genética , Craniossinostoses/patologia , Modelos Animais de Doenças , Mutação com Ganho de Função/genética , Regulação da Expressão Gênica no Desenvolvimento/genética , Humanos , Camundongos , Osteoblastos/metabolismo , Osteoblastos/patologia , Osteogênese/genética , Receptor IGF Tipo 1/genética , Crânio/metabolismo , Crânio/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...