Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 19(36): 25151-25157, 2017 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-28884181

RESUMO

In this work we demonstrate the use of the push-pull model system 4-(dimethylamino)benzonitrile (DMABN) as a convenient molecular probe to investigate the local solvation structure and dynamics by means of time-resolved infrared spectroscopy (TRIR). The photochemical features associated with this system provide several advantages due to the high charge separation between the ground and charge transfer states involving the characteristic nitrile bond, and an excited state lifetime that is long enough to observe the slow solvation dynamics in organic solvents and ionic liquids. The conversion from a locally excited state to an intramolecular charge transfer state (LE-ICT) in ionic liquids shows similar kinetic lifetimes in comparison to organic solvents. This similarity confirms that such conversion depends solely on the intramolecular reorganization of DMABN in the excited state, and not by the dynamics of solvation. In contrast, the relative shift of the ν(CN) vibration during the relaxation of the ICT state reveals two distinct lifetimes that are sensitive to the solvent environment. This study reveals a fast time component which is attributed to the dipolar relaxation of the solvent and a slower time component related to the rotation of the dimethylamino group of DMABN.

2.
Inorg Chem ; 54(19): 9438-46, 2015 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-26389702

RESUMO

From the reactions between W2(T(i)PB)4, where T(i)PB is 2,4,6-triisopropylbenzoate, and 2 equiv of acid, 4-formylbenzoic acid, HBzald, 4-(3-oxo-3-phenylpropanoyl)benzoic acid, HAvo, or 4-(2,2-difluoro-6-phenyl-2H-1λ(3),3,2λ(4)-dioxaborinin-4-yl)benzoic acid, HAvoBF2, three new compounds W2(T(i)PB)2(Bzald)2, I, W2(T(i)PB)2(Avo)2, II, and W2(T(i)PB)2(AvoBF2)2, III, have been prepared. As solid compounds I and II are blue while compound III is green. Characterization of these compounds has been carried out by means of (1)H NMR, MALDI-TOF MS, steady-state absorption and emission spectroscopies, and femtosecond and nanosecond transient absorption and time-resolved infrared spectroscopies. Compounds I and II have strong metal to ligand charge transfer, MLCT, transitions in the visible region of their spectra while compound III exhibits MLCT absorption in the near-infrared (λmax = 1017 nm). All three have S1 states that have corresponding lifetimes of ∼3-30 ps and are (1)MLCT in character. The triplet states are (3)MLCT with lifetimes in the range 3-10 ns. Density functional theory and time-dependent density functional theory were employed to perform electronic structure calculations in order to aid in the interpretation of these data. The spectroscopic properties of I and II are similar while the planarity of the ligand in III greatly lowers the energy of the MLCT state. The W2 unit enables direct observation of intersystem crossing from the (1)MLCT state to (3)MLCT state via the use of ultrafast spectroscopy.


Assuntos
Compostos Organometálicos/química , Tungstênio/química , Elétrons , Modelos Moleculares , Estrutura Molecular , Compostos Organometálicos/síntese química , Espectroscopia de Prótons por Ressonância Magnética , Teoria Quântica , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Espectrofotometria Infravermelho , Espectrofotometria Ultravioleta
3.
J Am Chem Soc ; 137(15): 5155-62, 2015 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-25856290

RESUMO

From the reactions between Mo2(T(i)PB)4, where T(i)PB is 2,4,6-triisopropylbenzoate, and 2 equiv of the acids 4-formylbenzoic acid, HBzald; 4-(3-oxo-3-phenylpropanoyl)benzoic acid, HAvo; and 4-(2,2-difluoro-6-phenyl-2H-1λ(3),3,2λ(4)-dioxaborinin-4-yl)benzoic acid, HAvoBF2, the compounds Mo2(T(i)PB)2(Bzald)2, I; Mo2(T(i)PB)2(Avo)2, II; and Mo2(T(i)PB)2(AvoBF2)2, III, have been isolated. Compounds I and II are red, and compound III is blue. The new compounds have been characterized by (1)H NMR, MALDI-TOF MS, steady-state absorption and emission spectroscopies, and femtosecond and nanosecond time-resolved transient absorption and infrared spectroscopies. Electronic structure calculations employing density functional theory and time-dependent density functional theory have been carried out to aid in the interpretation of these data. These compounds have strong metal-to-ligand charge transfer, MLCT, and transitions in the visible region of their spectra, and these comprise the S1 states having lifetimes ∼5-15 ps. The triplet states are Mo2δδ* with lifetimes in the microseconds. The spectroscopic properties of I and II are similar, whereas the planarity of the ligand in III greatly lowers the energy of the MLCT and enhances the intensity of the time-resolved spectra. The Mo2 unit shifts the ground state equilibrium entirely to the enol form and quenches the degradation pathways of the avobenzone moiety.


Assuntos
Álcoois/química , Cetonas/síntese química , Molibdênio/química , Compostos Organometálicos/química , Propiofenonas/química , Cristalografia por Raios X , Elétrons , Cetonas/química , Espectroscopia de Ressonância Magnética , Espectrometria de Massas , Modelos Moleculares , Estrutura Molecular , Compostos Organometálicos/síntese química , Processos Fotoquímicos , Prótons , Espectrofotometria Infravermelho , Espectrofotometria Ultravioleta , Fatores de Tempo
4.
J Am Chem Soc ; 136(32): 11428-35, 2014 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-25047088

RESUMO

The compounds cis-Mo2(DAniF)2(L)2 have been prepared, where DAniF = (N,N')-p-dianisyl formamidinate and L = thienyl-2-carboxylate (Th), 2,2'-bithienyl-5-carboxylate (BTh), and 2,2':5',5″-terthienyl-5-carboxylate (TTh). The compounds have been characterized by proton nuclear magnetic resonance ((1)H NMR), ultraviolet-visible (UV-vis) absorption and emission, differential pulse voltammetry, and time-resolved transient absorption and infrared (IR) spectroscopy. An X-ray crystal structure was obtained for the thienyl complex. The related salt [(n)Bu4N]2[Mo2(DAniF)2(TTh-CO2)2], where TTh-CO2 = 2,2':5',2″-terthienyl-5,5″-dicarboxylate, has also been prepared and employed in the attachment of the complex to TiO2 nanoparticles. The latter have been characterized by ground-state Fourier transform infrared spectroscopy (FTIR) and femtosecond time-resolved IR spectroscopy. The time-resolved data provide evidence for sub-picosecond charge injection from the Mo2 center to the semiconducting oxide particle.

5.
J Phys Chem A ; 117(29): 5997-6006, 2013 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-23570541

RESUMO

2-(2-Pyridyl)-4-methylthiazole carboxylic acid (PMT-H) and rhenium tricarbonyl chloride react to form the red crystalline compound fac-Re(PMT-H)(CO)3Cl, I, which is an analog of the well-known Re(bpy)(CO)3Cl molecule, where bpy is 2,2'-bipyridine. The acids PMT-H (2 equiv) and Re(PMT-H)(CO)3Cl (2 equiv) also react with Mo2(T(i)PB)4 (T(i)PB = 2,4,6-triisopropylbenzoate) in toluene to give the red compound trans-Mo2(T(i)PB)2(PMT)2, II, and the royal blue compound trans-Mo2(T(i)PB)2[(PMT)Re(CO)3Cl]2, III, respectively. The X-ray and spectroscopic characterization of I confirms its close relationship with Re(bpy)(CO)3Cl, as does the spectroscopic characterization of compounds II and III as analogs of other compounds of the form trans-M2(TiPB)2L2, where L is a π-acceptor ligand. Electronic structure calculations on model compounds II' and III', where formate ligands substitute for T(i)PB, show that the highest occupied molecular orbital (HOMO) in II is Mo2δ. When the Re(CO)3Cl unit is attached to the PMT ligand to form III, this orbital is stabilized significantly and now becomes associated with a close in energy band of Re d(6), t2g type orbitals. Oxidation of III is shown to be Mo2-based, as evident by EPR spectroscopy, and the lowest-energy electronic absorption corresponds to a Mo2δ-to-PMT π* transition. The S1 states in both II and III are metal-to-ligand charge-transfer (MLCT), and the lowest-energy triplet sate, T1 is (3)MoMoδδ*, as evidenced by its steady state emission spectral features. The excited states of compounds I (T1) and III (S1 and T1) have been investigated by time-resolved infrared spectroscopy (TRIR). The spectral features of I parallel those for Re(bpy)(CO)3Cl, with the lowest-energy T1 state corresponding to Re dπ to PMT-H π* charge transfer, producing higher-energy CO stretching vibrations relative to the ground state. For III, the CO vibrations are shifted to lower energy, consistent with charge being located on the PMT ligand, which enhances Re-to-CO backbonding. In the MoMoδδ* T1 state, however, the backbonding is reduced to the PMT ligand, and the CO stretches are at slightly higher energy relative to the ground state.

6.
Dalton Trans ; 42(15): 5275-80, 2013 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-23412626

RESUMO

Evidence, based on femtosecond transient absorption and time resolved infrared spectroscopy, is presented for photoinduced charge transfer from the Mo2δ orbital of the quadruply bonded molecule trans-Mo2(T(i)PB)2(BTh)2, where T(i)PB = 2,4,6-triisopropyl benzoate and BTh = 2,2'-bithienylcarboxylate, to di-n-octyl perylene diimide and di-n-hexylheptyl perylene diimide in thin films and solutions of the mixtures. The films show a long-lived charge separated state while slow back electron transfer, τBET ~ 500 ps, occurs in solution.

7.
Acc Chem Res ; 46(2): 529-38, 2013 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-23145921

RESUMO

While chemists have extensively studied the photophysical properties of d(6), d(8), and d(10) transition metal complexes, their early transition metal counterparts have received less attention. Quadruply bonded complexes of molybdenum and tungsten supported by carboxylate ligands have intense metal-to-ligand charge transfer (MLCT) absorptions that arise from the electronic coupling of the metal-metal (MM) δ orbital with the CO(2) π-system. This coupling may in turn be linked to an extended π-conjugated organic functional group. The major interaction is akin to the so-called back-bonding in metal carbonyl complexes. By the appropriate selection of MM, its attendant ligands, and the organic group, this absorption can be tuned to span the visible and near IR range, from 400 to 1000 nm. Consequently, these complexes offer potential as photon harvesters for photovoltaic devices and photocatalysis. In this Account, we describe recent studies of dinuclear M(II) containing complexes, where M = Mo or W, and show that there are both parallels and disparities to the monomeric transition metal complexes. These early transition metal complexes have relatively long lived excited state singlets when compared to other transition metal complexes. They also often show unusual dual emission (fluorescence and phosphorescence), with singlet (S(1)) lifetimes that range from 1 to 20 ps, and triplet (T(1)) lifetimes from 3 ns to 200 µs. The fluorescent S(1) states are typically (1)MLCT for both M = Mo and W. These extended singlet lifetimes are uncommon for mononuclear transition metal complexes, which typically have very short lived (1)MLCT states due to rapid femto-second intersystem crossing rates. However, the T(1) states differ. This phosphorescence is MLCT in nature when M = W, while this emission comes from the δδ* state for M = Mo. Through time-resolved femtosecond infrared spectroscopy, we can detect the asymmetric stretch of the CO(2) ligand in both the singlet and triplet δδ* states. Through these analytical methods, we can study how the charge distribution in the singlet and triplet excited states changes over time. In addition, we can detect delocalized or localized examples of MLCT states, which represent class III and I excited state mixed valence in the Robin and Day scheme.

8.
J Am Chem Soc ; 134(51): 20820-6, 2012 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-23198709

RESUMO

From the reactions between M(2)(T(i)PB)(4) and HO(2)CC(6)H(5)-η(6)-Cr(CO)(3) (2 equiv), the title compounds trans-M(2)(T(i)PB)(2)[O(2)CC(6)H(5)-η(6)-Cr(CO)(3)](2), where M = Mo or W, and T(i)PB = 2,4,6-triisopropylbenzoate have been prepared and characterized. Compound I (M = Mo) was characterized by a single crystal X-ray structural determination which revealed a centrosymmetric MoMo quadruply bonded molecule. Compound I is red and the tungsten complex II is blue as a result of intense metal-to-ligand charge transfer (MLCT), which is principally M(2)δ to benzoate π* with some chromium t(2g) participation, according to calculations employing density functional theory. Compound I shows dual emission from S(1) and T(1) states that are assigned (1)MLCT and (3) MoMoδδ*, respectively. Both complexes have been studied by time-resolved infrared spectroscopy (TRIR) in the region of the carbonyl stretching frequency. Compound II displays a shift of ν(CO) to lower energy in both the (1)MLCT and (3)MLCT states in THF, while I in CH(2)Cl(2) shows ν(CO) bands shifted to both higher and lower energy. We attribute the shift to higher energy seen for I to a Cr t(2g) to benzoate π* transition which mixes with the Mo(2)δ to benzoate charge transfer upon excitation at 514 nm. In THF compound I undergoes a reversible photodissociation, potentially due to CO loss. Based on the TRIR of the carbonyl vibrations, it is proposed that the MLCT states are delocalized over both benzoate Cr(CO)(3) groups, as supported by calculations.

9.
Dalton Trans ; 41(42): 13097-104, 2012 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-23011580

RESUMO

Quadruply bonded dinuclear metal complexes of molybdenum and tungsten have the MM configuration σ(2)π(4)δ(2) and a considerable degree of attention has been devoted to studies of the δ → δ(*) transition. For compounds of the type M(2)(O(2)CR)(4), the CO(2) π(*) orbitals introduce a M(2) δ to ligand π(*) transition, a (1)MLCT absorption which may be lower in energy than the δ → δ(*) and is more intense, thus obscuring the observation of the latter. When the R group is a conjugated organic system such as an aryl group, the (1)MLCT shifts to even lower energy and emission is seen from this S(1) state in addition to phosphorescence from the T(1) state which may be either (3)MLCT or (3)MMδδ(*). The latter typically occurs around 1100 nm with a lifetime that ranges from ~1 µs (M = W) to 100 µs (M = Mo). The S(1)(1)MLCT states have lifetimes of ~1-20 ps, allowing for fs and ns studies of the charge distribution/localization with time in both the S(1) and T(1) states, which is quite rare for transition metal coordination complexes. Of particular interest and focus have been complexes of the type trans-M(2)L(2)L'(2) where L and L' are carboxylate or amidinate groups for which only one set of ligands allows for expansive Lπ-M(2)δ-Lπ conjugation and has a low energy (1)MLCT. Compounds of this type have excited states that may be considered as mixed valence (MV) ions [L-M(2)(+)-L(-)] ↔ [L(-)-M(2)(+)-L] where the hole resides on the M(2) unit and the electron is either localized on one ligand, a class I or II MV ion, or is fully delocalized over both ligands, a class III ion in the Robin and Day scheme. Examples of these systems will be described along with the newly prepared complexes trans-M(2)(T(i)PB)(2)(O(2)CC≡C-9-anthracene)(2), M = Mo, W, that have the IR-active reporter groups CO(2) and C≡C.

10.
Dalton Trans ; 41(39): 12270-81, 2012 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-22930257

RESUMO

From the reactions between M(2)(T(i)PB)(4), where T(i)PB = 2,4,6-triisopropylbenzoate and M = Mo or W, in toluene and each of the respective carboxylic acids (2 equiv) the quadruply MM bonded compounds trans-M(2)(T(i)PB)(2)(O(2)C-C≡C-Ar)(2) have been prepared where Ar = p-tolyl and M = Mo, , and M = W, , and Ar = 9-anthracenyl, where M = Mo, 2a, and M = W, 2b. Single crystal X-ray crystallographic studies of 1a and 2b confirmed the trans substitution pattern about the Mo(2)(4+) unit and the centrosymmetric molecules have structural features that indicate extensive Lπ-Mo(2)δ-Lπ conjugation involving the arylethynylcarboxylates. The compounds are intensely colored as a result of the HOMO → LUMO, metal δ-to-ligand π* charge transfer (1)MLCT transition: 1a (orange), 1b (red), 2a (blue) and 2b(green). The compounds 1a, 2a, 1b and 2b have been characterized by UV-Vis-NIR absorption and emission spectroscopy, cyclic voltammetry, femtosecond (fs) and nanosecond (ns) transient absorption spectroscopy and by fs time-resolved infrared spectroscopy in the region of ν(C≡C), ν(CO(2)) and from 1400-1000 cm(-1). Aided by density functional theory, (DFT) and time dependent DFT, the electronic structures of the ground state and the S(1) and T(1) states are described. The molybdenum compounds have short lived (1)MLCT states, 1a ~ 5.0 ps and 2a ~ 10.5 ps, that undergo intersystem crossing to long lived (3)MoMoδδ* states: 1a ~ 101 µs and 2a ~ 83 µs. The tungsten complexes show interesting time-resolved infrared spectra in the ν(C≡C) region when compared with their ground state. Compound 1b shows ν(C≡C) at 1975 cm(-1) for the (1)MLCT state which decays with τ ~ 0.7 ps to ν(C≡C) at 2000 cm(-1) for the (3)MLCT state. For 2b the (1)MLCT is characterized by ν(C≡C) at 2150 cm(-1), τ ~ 19 ps, and a very broad absorption with a maximum ~1970 cm(-1) which is proposed to arise from a low energy electronic transition. The (3)MLCT state for shows no evidence of ν(C≡C) and is suggested to have an electron localized principally on the anthracenyl portion of the ligand, a proposal that finds support from the nature of triplet transient absorption spectrum of 2b.

11.
Inorg Chem ; 51(1): 491-8, 2012 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-22129155

RESUMO

The compounds M(2)(O(2)C(t)Bu)(4) and M(2)(O(2)CC(6)H(5))(4), where M = Mo or W, have been examined by femtosecond time-resolved IR (fs-TRIR) spectroscopy in tetrahydrofuran with excitation into the singlet metal-to-ligand charge-transfer ((1)MLCT) band. In the region from 1500 to 1600 cm(-1), a long-lived excited state (>2 ns) has been detected for the compounds M(2)(O(2)C(t)Bu)(4) and Mo(2)(O(2)C-C(6)H(5))(4) with an IR absorption at ~1540 cm(-1) assignable to the asymmetric CO(2) stretch, ν(as)(CO(2)), of the triplet metal-metal δ-δ star ((3)MM δδ*) state. The fs-TRIR spectra of W(2)(O(2)C-C(6)H(5))(4) are notably different and are assigned to decay of the MLCT states. In (3)MM δδ*, the removal of an electron from the δ orbital reduces MM δ to CO(2) π* back-bonding and causes a shift of ν(as)(CO(2)) to higher energy by ~30-60 cm(-1), depending on the metal. TRIR spectroscopy also provides evidence for M(2)(O(2)C(t)Bu)(4), where M = Mo or W, having MM δδ* S(1) states with ν(as)(CO(2)) distinct from those of the (3)MM δδ* states.

12.
Dalton Trans ; 41(8): 2257-63, 2012 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-22186951

RESUMO

From the reactions between M(2)(T(i)PB)(4), where T(i)PB = 2,4,6-triisopropylbenzoate and two equivalents each of 2-furan carboxylic acid, FuCO(2)H, and 2-selenophene carboxylic acid, SpCO(2)H in toluene, the new compounds trans-M(2)(T(i)PB)(2)(O(2)CFu)(2) (1a M = Mo, 2a M = W) and trans-M(2)(T(i)PB)(2)(O(2)CSp)(2) (1b M = Mo, 2b M = W) were formed. These new compounds have been characterized by (1)H NMR, steady-state UV-Vis-NIR absorption and emission spectroscopy, cyclic and differential pulse voltammetry, and fs and ns transient absorption spectroscopy. The compound Mo(2)(T(i)PB)(2)(O(2)CSp)(2) (1b) has been characterized by single crystal X-ray crystallography. These data are compared with those previously reported for related 2-thiophene carboxylate derivatives: M(2)(T(i)PB)(2)(O(2)CTh)(2). The physico-chemical data correlate well with electronic structure calculations performed on model compounds. All compounds have detectible S(1) photoexcited states with lifetimes that vary from ∼5 ps to < 1 ps. The molybdenum compounds have T(1) states with microsecond lifetimes that are assigned as MMδδ* whereas the T(1) states for tungsten are (3)MLCT with lifetimes on the order of nanoseconds. In all cases, shorter lifetimes were seen in complexes containing heavier atoms.

13.
J Am Chem Soc ; 133(30): 11515-23, 2011 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-21692482

RESUMO

In recent years, interfacial mobility has gained popularity as a model with which to rationalize both affinity in ligand binding and the often observed phenomenon of enthalpy-entropy compensation. While protein contraction and reduced mobility, as demonstrated by computational and NMR techniques respectively, have been correlated to entropies of binding for a variety of systems, to our knowledge, Raman difference spectroscopy has never been included in these analyses. Here, nonresonance Raman difference spectroscopy, isothermal titration calorimetry, and X-ray crystallography were utilized to correlate protein contraction, as demonstrated by an increase in protein interior packing and decreased residual protein movement, with trends of enthalpy-entropy compensation. These results are in accord with the interfacial mobility model and lend additional credence to this view of protein activity.


Assuntos
Simulação por Computador , Ácidos Hidroxâmicos/química , Metaloproteinase 3 da Matriz/química , Termodinâmica , Sítios de Ligação , Biologia Computacional , Cristalografia por Raios X , Ligantes , Metaloproteinase 3 da Matriz/isolamento & purificação , Modelos Moleculares , Estrutura Molecular , Análise Espectral Raman , Estereoisomerismo
14.
Proc Natl Acad Sci U S A ; 108(20): 8152-6, 2011 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-21525414

RESUMO

The singlet S(1) and triplet T(1) photoexcited states of the compounds containing MM quadruple bonds trans-M(2)(T(i)PB)(2)(O(2)CC(6)H(4)-4-CN)(2), where T(i)PB = 2,4,6-triisopropylbenzoate and M = Mo (I) or M = W (I(')), and trans-M(2)(O(2)CMe)(2)((N[(i) Pr ])(2)CC ≡ CC(6)H(5))(2), where M = Mo (II) and M = W (II(')), have been investigated by a variety of spectroscopic techniques including femtosecond time-resolved infrared spectroscopy. The singlet states are shown to be delocalized metal-to-ligand charge transfer (MLCT) states for I and I(') but localized for II and II(') involving the cyanobenzoate or amidinate ligands, respectively. The triplet states are MoMoδδ* for both I and II but delocalized (3)MLCT for I(') and localized (3)MLCT for II('). These differences arise from consideration of the relative orbital energies of the M(2)δ or M(2)δ* and the ligand π(∗) as well as the magnitudes of orbital overlap.

15.
J Phys Chem A ; 114(48): 12675-81, 2010 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-21067133

RESUMO

The title compounds trans-M(2)(O(2)CMe)(2)[C((i)PrN)(2)C≡C-Ph](2), I (M = Mo) and II (M = W), show electronic absorptions in the visible region of the spectrum assignable to (1)MLCT [M(2)δ to phenylethynylamidinate π*]. These compounds show dual emission from S(1) and T(1) states. For both I and II, S(1) is (1)MLCT, but for I the T(1) state is shown to be MMδδ* while for II T(1) is (3)MLCT. The lifetimes of the S(1) and T(1) states have been determined by femtosecond and nanosecond transient absorption spectroscopy: for I S(1) ∼ 20 ps and T(1) ∼ 100 µs and for II S(1) ∼ 6 ps and T(1) ∼ 5 µs. From solvent dependence of the absorption and emission spectra, we suggest that the S(1) states are localized on one amidinate ligand though the initial absorption is to a delocalized state.


Assuntos
Molibdênio/química , Compostos Organometálicos/química , Teoria Quântica , Tungstênio/química , Alcinos/química , Amidinas/química , Modelos Moleculares , Fotoquímica
16.
Dalton Trans ; 39(48): 11587-93, 2010 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-21052590

RESUMO

The preparation and structure of Re(2)(dppm)(2)(O(2)CC(6)H(4)-p-NO(2))(2)Cl(2), where dppm = Ph(2)PCH(2)PPh(2), is reported together with its photophysical properties (absorption, steady state emission, fs- and ns-transient absorption spectroscopy) and electrochemistry. These data are compared with photophysical studies on the previously reported Re(2)(dppm)(2)(O(2)CCH(3))(2)Cl(2). The preparation of the complex Re(2)(O(2)CC(6)H(4)-p-NO(2))(4)Cl(2) is also reported together with its photophysical properties which allows for a comparison of the electronic structures and photophysical states of Re(2)(4+) and Re(2)(6+) containing complexes having MM configurations σ(2)π(4)δ(2)δ(*2) and σ(2)π(4)δ(2), respectively. An interesting comparison is also made with the related MM quadruply bonded complexes of molybdenum and tungsten.

17.
Dalton Trans ; 39(8): 1979-84, 2010 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-20148214

RESUMO

The reaction between M(2)(TiPB)(4) (M = Mo, W) where TiPB = 2,4,6-triisopropylbenzoate and 6-carboethoxy-2-azulenecarboxylic acid (2 equiv.) in toluene leads to the formation of complexes M(2)(TiPB)(2)(6-carboethoxy-2-azulenecarboxylate)(2). Compound (M = Mo) is blue and compound (M = W) is green. Both are air sensitive, hydrocarbon soluble species that gave the corresponding molecular ions in their mass spectra (MALDI-TOF). They show metal based oxidations and ligand based reductions. Electronic structure calculations (DFT and time dependent DFT) indicate that the two azulene carboxylate pi systems are coupled by their interactions with the M(2)delta orbitals. Their intense colors arise from M(2)delta to azulene pi* electronic transitions. While compound exhibits weak emission at approximately 900 nm, no emission has been detected for . Both and have been studied by fs and ns transient absorption spectroscopy. The X-ray analysis of the molecular structure of in the solid state confirmed the paddlewheel nature of its W(2)(O(2)C)(4) core and the trans orientation of the ligands.

18.
Inorg Chem ; 48(23): 11187-95, 2009 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-19888750

RESUMO

The compounds M(2)(TiPB)(2)(OSC-2-Th)(2) have been prepared from the reactions between M(2)(TiPB)(4) and Th-2-COSH (2 equiv) in toluene solution, where M = Mo (Mo(2)ThCOS) or W (W(2)ThCOS), TiPB = 2,4,6-triisopropylbenzoate and Th = thienyl. The molybdenum and tungsten compounds are pink and blue, air-sensitive, ether soluble solids that show M(+) ions in the mass spectrometer and metal and ligand based reversible oxidation and reduction waves, respectively, by cyclic voltammetry. Electronic structure calculations on the model compounds M(2)(O(2)CH)(2)(OSC-2-Th)(2) indicate that the highest occupied molecular orbital (HOMO) is principally M(2)delta and the lowest unoccupied molecular orbital (LUMO) is thienylthiocarboxylate pi* but with significant metal-sulfur mixing. The intense visible absorptions arise from (1)MLCT, M(2)delta to thienylthiocarboxylate. The photoexcited states of these molecules have been studied by transient absorption spectroscopy and steady state emission. These properties are compared with those of previously reported thienylcarboxylate compounds, M(2)(TiPB)(2)(O(2)C-2-Th)(2), where M = Mo (Mo(2)ThCO(2)) or W (W(2)ThCO(2)).

19.
Inorg Chem ; 48(17): 8536-43, 2009 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-19673538

RESUMO

The reactions between MM(TiPB)(4), where TiPB = 2,4,6-triisopropylbenzoate and MM = MoW and W(2), and the (2,2':5',2''-terthiophene)-5-carboxylic acid, TThH (2 equiv) leads to the formation of new compounds trans-MM(TiPB)(2)(TTh)(2), II and III, respectively, as well as to the previously reported compound I, when MM = Mo(2). The compounds have been characterized by elemental analysis, (1)H NMR spectroscopy, electronic absorption, and emission spectroscopies together with cyclic voltammetry and differential pulse voltammetry. Calculations on the model compounds I', II', and III', where formate ligands substitute for TiPB, have been carried out employing density functional theory (DFT) and time-dependent DFT. These complexes display intense (1)MLCT absorptions (MMdelta to thienyl carboxylate) and have oxidations and reductions that are metal (MMdelta) and thienyl ligand based, respectively. All compounds show emission in the near-IR region. At low temperature the NIR emission from I and II shows clear evidence of vibronic features due to upsilon(MM) approximately 350-390 cm(-1), and all compounds show evidence of a vibronic feature due to upsilon(CO(2)) approximately 1200 cm(-1). Transient absorption spectroscopy reveals relatively short-lived S(1) states, tau approximately 10 ps, and longer lived T(1) states: tau approximately 72 micros for I, approximately 160 ns for II, and approximately 90 ns for III. The chemistry described here reveals the remarkable influence of MMdelta to TTh pi electronic coupling on the optoelectronic properties of the thienyl chains.

20.
Inorg Chem ; 48(10): 4394-9, 2009 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-19378951

RESUMO

The preparation and characterization (elemental analysis, (1)H NMR, and cyclic voltammetry) of the new compounds MM(TiPB)(4), where MM = MoW and W(2) and TiPB = 2,4,6-triisopropylbenzoate, are reported. Together with Mo(2)(TiPB)(4), previously reported by Cotton et al. (Inorg. Chem. 2002, 41, 1639), the new compounds have been studied by electronic absorption, steady-state emission, and transient absorption spectroscopy (femtosecond and nanosecond). The compounds show strong absorptions in the visible region of the spectrum that are assigned to MMdelta to arylcarboxylate pi* transitions, (1)MLCT. Each compound also shows luminescence from two excited states, assigned as the (1)MLCT and (3)MMdeltadelta* states. The energy of the emission from the (1)MLCT state follows the energy ordering MM = Mo(2) > MoW > W(2), but the emission from the (3)MMdeltadelta* state follows the inverse order: MM = W(2) > MoW > Mo(2). Evidence is presented to support the view that the lower energy emission in each case arises from the (3)MMdeltadelta* state. Lifetimes of the (1)MLCT states in these systems are approximately 0.4-6 ps, whereas phosphorescence is dependent on the MM center: Mo(2) approximately 40 micros, MoW approximately 30 micros, and W(2) approximately 1 micros.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...