Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 100
Filtrar
1.
Sci Total Environ ; 926: 171721, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38494028

RESUMO

Black Carbon (BC), formed by incomplete combustion, absorbs solar radiation and heats the atmosphere. We investigated the enhancement in optical absorption of BC due to coatings of water-soluble (WS) species in the polluted South Asian atmosphere. The BC Mass Absorption Cross-section (MAC; 678 nm) was estimated before and after removal of the WS components. Wintertime samples were collected from three South Asian receptor observatories intercepting large-footprint outflow: Bangladesh Climate Observatory Bhola (BCOB; integrating outflow of the Indo-Gangetic Plain), Maldives Climate Observatories at Hanimaadhoo (MCOH) and at Gan (MCOG), both reflecting outflow from the South Asian region. The ambient MAC observed at BCOB, MCOH and MCOG were 4.2 ± 1.4, 7.9 ± 1.9 and 7.1 ± 1.5 m2 g-1, respectively. The average enhancement of the BC MAC due to WS coatings (i.e., ws-EMAC) was identical at all three sites (1.6 ± 0.5) indicating that the anthropogenic aerosols had already evolved to a fully coated morphology at BCOB and/or that subsequent aging involved two compensating evolution processes of the coating. Inspecting the key coating component sulfate; the sulfate-to-BC ratio increased threefold when transitioning from BCOB to MCOH and by about 1.5 times from BCOB to MCOG. Conversely, both WS organic carbon (WSOC)/BC and water-insoluble OC (WIOC)/BC ratios declined with distance: WSOC/BC diminished by 84 % from BCOB to MCOH and by 80 % from BCOB to MCOG, while WIOC/BC dropped by about 63 % and 59 %, respectively. Such declines in WSOC and WIOC reflect a combination of photochemical oxidation and more efficient washout of OC compared to BC. The observed changes in the SO42-/BC and WSOC/BC ratios across South Asia highlight the significant impact of aerosol composition on the optical properties of Black Carbon (BC). These findings emphasize the need for detailed studies on aerosol composition to improve climate models and develop effective strategies for reducing the impact of anthropogenic aerosols on the climate.

2.
NPJ Clim Atmos Sci ; 6(1): 39, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37252186

RESUMO

Anthropogenic aerosols mask the climate warming caused by greenhouse gases (GHGs). In the absence of observational constraints, large uncertainties plague the estimates of this masking effect. Here we used the abrupt reduction in anthropogenic emissions observed during the COVID-19 societal slow-down to characterize the aerosol masking effect over South Asia. During this period, the aerosol loading decreased substantially and our observations reveal that the magnitude of this aerosol demasking corresponds to nearly three-fourths of the CO2-induced radiative forcing over South Asia. Concurrent measurements over the northern Indian Ocean unveiled a ~7% increase in the earth's surface-reaching solar radiation (surface brightening). Aerosol-induced atmospheric solar heating decreased by ~0.4 K d-1. Our results reveal that under clear sky conditions, anthropogenic emissions over South Asia lead to nearly 1.4 W m-2 heating at the top of the atmosphere during the period March-May. A complete phase-out of today's fossil fuel combustion to zero-emission renewables would result in rapid aerosol demasking, while the GHGs linger on.

3.
Proc Natl Acad Sci U S A ; 120(8): e2210005120, 2023 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-36780523

RESUMO

Effects of aerosols such as black carbon (BC) on climate and buildup of the monsoon over the Indian Ocean are insufficiently quantified. Uncertain contributions from various natural and anthropogenic sources impede our understanding. Here, we use observations over 5 y of BC and its isotopes at a remote island observatory in northern Indian Ocean to constrain loadings and sources during little-studied monsoon season. Carbon-14 data show a highly variable yet largely fossil (65 ± 15%) source mixture. Combining carbon-14 with carbon-13 reveals the impact of African savanna burning, which occasionally approach 50% (48 ± 9%) of the total BC loadings. The BC mass-absorption cross-section for this regime is 7.6 ± 2.6 m2/g, with higher values during savanna fire input. Taken together, the combustion sources, longevity, and optical properties of BC aerosols over summertime Indian Ocean are different than the more-studied winter aerosol, with implications for chemical transport and climate model simulations of the Indian monsoon.

4.
Environ Sci Technol ; 56(22): 15460-15469, 2022 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-36309910

RESUMO

Vast black carbon (BC) emissions from sub-Saharan Africa are perceived to warm the regional climate, impact rainfall patterns, and impair human respiratory health. However, the magnitudes of these perturbations are ill-constrained, largely due to limited ground-based observations and uncertainties in emissions from different sources. This paper reports multiyear concentrations of BC and other key PM2.5 aerosol constituents from the Rwanda Climate Observatory, serving as a regional receptor site. We find a strong seasonal cycle for all investigated chemical species, where the maxima coincide with large-scale upwind savanna fires. BC concentrations show notable interannual variability, with no clear long-term trend. The Δ14C and δ13C signatures of BC unambiguously show highly elevated biomass burning contributions, up to 93 ± 3%, with a clear and strong savanna burning imprint. We further observe a near-equal contribution from C3 and C4 plants, irrespective of air mass source region or season. In addition, the study provides improved relative emission factors of key aerosol components, organic carbon (OC), K+, and NO3-, in savanna-fires-influenced background atmosphere. Altogether, we report quantitative source constraints on Eastern Africa BC emissions, with implications for parameterization of satellite fire and bottom-up emission inventories as well as regional climate and chemical transport modeling.


Assuntos
Poluentes Atmosféricos , Incêndios , Humanos , Poluentes Atmosféricos/análise , Pradaria , Fuligem/análise , Aerossóis/análise , Carbono/análise , Biomassa , África Subsaariana , Monitoramento Ambiental
5.
Nat Commun ; 13(1): 5858, 2022 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-36195594

RESUMO

Arctic change is expected to destabilize terrestrial carbon (terrOC) in soils and permafrost, leading to fluvial release, greenhouse gas emission and climate feedback. However, landscape heterogeneity and location-specific observations complicate large-scale assessments of terrOC mobilization. Here we reveal differences in terrOC release, deduced from the Circum-Arctic Sediment Carbon Database (CASCADE) using source-diagnostic (δ13C-Δ14C) and carbon accumulation data. The results show five-times larger terrOC release from the Eurasian than from the American Arctic. Most of the circum-Arctic terrOC originates from near-surface soils (61%); 30% stems from Pleistocene-age permafrost. TerrOC translocation, relative to land-based terrOC stocks, varies by a factor of five between circum-Arctic regions. Shelf seas with higher relative terrOC translocation follow the spatial pattern of recent Arctic warming, while such with lower translocation reflect long-distance lateral transport with efficient remineralization of terrOC. This study provides a receptor-based perspective for how terrOC release varies across the circum-Arctic.


Assuntos
Gases de Efeito Estufa , Pergelissolo , Regiões Árticas , Carbono/análise , Solo
6.
Nat Commun ; 13(1): 5057, 2022 08 27.
Artigo em Inglês | MEDLINE | ID: mdl-36030269

RESUMO

Subsea permafrost represents a large carbon pool that might be or become a significant greenhouse gas source. Scarcity of observational data causes large uncertainties. We here use five 21-56 m long subsea permafrost cores from the Laptev Sea to constrain organic carbon (OC) storage and sources, degradation state and potential greenhouse gas production upon thaw. Grain sizes, optically-stimulated luminescence and biomarkers suggest deposition of aeolian silt and fluvial sand over 160 000 years, with dominant fluvial/alluvial deposition of forest- and tundra-derived organic matter. We estimate an annual thaw rate of 1.3 ± 0.6 kg OC m-2 in subsea permafrost in the area, nine-fold exceeding organic carbon thaw rates for terrestrial permafrost. During 20-month incubations, CH4 and CO2 production averaged 1.7 nmol and 2.4 µmol g-1 OC d-1, providing a baseline to assess the contribution of subsea permafrost to the high CH4 fluxes and strong ocean acidification observed in the region.


Assuntos
Gases de Efeito Estufa , Pergelissolo , Carbono , Concentração de Íons de Hidrogênio , Água do Mar , Solo
7.
Nat Commun ; 13(1): 5115, 2022 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-36045131

RESUMO

Incomplete understanding of the sources of secondary organic aerosol (SOA) leads to large uncertainty in both air quality management and in climate change assessment. Chemical reactions occurring in the atmospheric aqueous phase represent an important source of SOA mass, yet, the effects of anthropogenic emissions on the aqueous SOA (aqSOA) are not well constrained. Here we use compound-specific dual-carbon isotopic fingerprints (δ13C and Δ14C) of dominant aqSOA molecules, such as oxalic acid, to track the precursor sources and formation mechanisms of aqSOA. Substantial stable carbon isotope fractionation of aqSOA molecules provides robust evidence for extensive aqueous-phase processing. Contrary to the paradigm that these aqSOA compounds are largely biogenic, radiocarbon-based source apportionments show that fossil precursors produced over one-half of the aqSOA molecules. Large fractions of fossil-derived aqSOA contribute substantially to the total water-soluble organic aerosol load and hence impact projections of both air quality and anthropogenic radiative forcing. Our findings reveal the importance of fossil emissions for aqSOA with effects on climate and air quality.


Assuntos
Poluentes Atmosféricos , Aerossóis/análise , Poluentes Atmosféricos/análise , Isótopos de Carbono/análise , China , Fósseis , Água
8.
Sci Total Environ ; 832: 155020, 2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-35381240

RESUMO

As an important component of carbonaceous aerosols (CA), organic carbon (OC) exerts a strong, yet insufficiently constrained perturbation of the climate. In this study, we reported sources of OC based on its natural abundance radiocarbon (14C) fingerprinting in aerosols and water-insoluble organic carbon (WIOC) in snowpits across the Tibetan Plateau (TP) - one of the remote regions in the world and a freshwater reservoir for billions of people. Overall, the proportions from 14C-based non-fossil fuel contribution (fnon-fossil) for OC in aerosols was 74 ± 10%, while for WIOC in snowpits was 81 ± 10%, both of which were significantly higher than that of elemental carbon (EC). These indicated sources of OC (WIOC) and EC were different at remote TP. Spatially, high fnon-fossil of WIOC of snowpit samples appeared at the inner part of the TP, indicating the important contribution of local non-fossil sources. Therefore, local non-fossil sources rather than long-range transportation OC dominants its total amount of the TP. In addition, the contribution of local non-fossil sourced WIOC increased during the monsoon period because heavy precipitation removed a high ratio of long-range transportation WIOC. The results of this study showed that not only OC and EC but also their different fuel sources should be treated separately in models to investigate their sources and atmospheric transportation.


Assuntos
Poluentes Atmosféricos , Carbono , Aerossóis/análise , Poluentes Atmosféricos/análise , Atmosfera , Carbono/análise , Monitoramento Ambiental/métodos , Humanos , Camada de Gelo , Material Particulado/análise , Estações do Ano , Tibet , Água
9.
Environ Sci Technol ; 56(1): 165-174, 2022 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-34914368

RESUMO

South Asian air is among the most polluted in the world, causing premature death of millions and asserting a strong perturbation of the regional climate. A central component is carbon monoxide (CO), which is a key modulator of the oxidizing capacity of the atmosphere and a potent indirect greenhouse gas. While CO concentrations are declining elsewhere, South Asia exhibits an increasing trend for unresolved reasons. In this paper, we use dual-isotope (δ13C and δ18O) fingerprinting of CO intercepted in the South Asian outflow to constrain the relative contributions from primary and secondary CO sources. Results show that combustion-derived primary sources dominate the wintertime continental CO fingerprint (fprimary ∼ 79 ± 4%), significantly higher than the global estimate (fprimary ∼ 55 ± 5%). Satellite-based inventory estimates match isotope-constrained fprimary-CO, suggesting observational convergence in source characterization and a prospect for model-observation reconciliation. This "ground-truthing" emphasizes the pressing need to mitigate incomplete combustion activities for climate/air quality benefits in South Asia.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Poluentes Atmosféricos/análise , Poluição do Ar/análise , Monóxido de Carbono , Monitoramento Ambiental , Material Particulado/análise
10.
Environ Sci Technol ; 55(18): 12243-12249, 2021 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-34506107

RESUMO

Clean air is a key parameter for a sustainable society, and currently, megacity Dhaka has among the worst air qualities in the world. This results from poorly constrained contributions of a variety of sources from both local emissions and regional influx from the highly polluted Indo-Gangetic Plain, impacting the respiratory health of the 21 million inhabitants in the Greater Dhaka region. An important component of the fine particulate matter (PM2.5) is black carbon (BC) aerosols. In this study, we investigated the combustion sources of BC using a dual carbon isotope (δ13C and Δ14C) in Dhaka during the high-loading winter period of 2013/14 (regular and lockdown/hartal period) in order to guide mitigation policies. On average, BC (13 ± 6 µg m-3) contributed about 9% of the PM2.5 (145 ± 79 µg m-3) loadings. The relative contribution from biomass combustion under regular conditions was 44 ± 1% (with the rest from fossil combustion), while during periods of politically motivated large-scale lockdown of business and traffic, the biomass burning contribution increased to 63 ± 1%. To reduce the severe health impact of BC and other aerosol pollution in Dhaka, mitigation should therefore target regional-scale biomass/agricultural burning in addition to local traffic.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Aerossóis/análise , Poluentes Atmosféricos/análise , Bangladesh , Biomassa , Carbono/análise , Monitoramento Ambiental , Material Particulado/análise , Estações do Ano
11.
Environ Sci Technol ; 55(8): 4368-4377, 2021 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-33769801

RESUMO

Black carbon (BC) particles contribute to climate warming by heating the atmosphere and reducing the albedo of snow/ice surfaces. The available Arctic BC deposition records are restricted to the Atlantic and North American sectors, for which previous studies suggest considerable spatial differences in trends. Here, we present first long-term BC deposition and radiocarbon-based source apportionment data from Russia using four lake sediment records from western Arctic Russia, a region influenced by BC emissions from oil and gas production. The records consistently indicate increasing BC fluxes between 1800 and 2014. The radiocarbon analyses suggest mainly (∼70%) biomass sources for BC with fossil fuel contributions peaking around 1960-1990. Backward calculations with the atmospheric transport model FLEXPART show emission source areas and indicate that modeled BC deposition between 1900 and 1999 is largely driven by emission trends. Comparison of observed and modeled data suggests the need to update anthropogenic BC emission inventories for Russia, as these seem to underestimate Russian BC emissions and since 1980s potentially inaccurately portray their trend. Additionally, the observations may indicate underestimation of wildfire emissions in inventories. Reliable information on BC deposition trends and sources is essential for design of efficient and effective policies to limit climate warming.


Assuntos
Poluentes Atmosféricos , Poluentes Atmosféricos/análise , Regiões Árticas , Carbono/análise , Monitoramento Ambiental , Federação Russa , Fuligem/análise
12.
Proc Natl Acad Sci U S A ; 118(10)2021 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-33649226

RESUMO

The East Siberian Arctic Shelf holds large amounts of inundated carbon and methane (CH4). Holocene warming by overlying seawater, recently fortified by anthropogenic warming, has caused thawing of the underlying subsea permafrost. Despite extensive observations of elevated seawater CH4 in the past decades, relative contributions from different subsea compartments such as early diagenesis, subsea permafrost, methane hydrates, and underlying thermogenic/ free gas to these methane releases remain elusive. Dissolved methane concentrations observed in the Laptev Sea ranged from 3 to 1,500 nM (median 151 nM; oversaturation by ∼3,800%). Methane stable isotopic composition showed strong vertical and horizontal gradients with source signatures for two seepage areas of δ13C-CH4 = (-42.6 ± 0.5)/(-55.0 ± 0.5) ‰ and δD-CH4 = (-136.8 ± 8.0)/(-158.1 ± 5.5) ‰, suggesting a thermogenic/natural gas source. Increasingly enriched δ13C-CH4 and δD-CH4 at distance from the seeps indicated methane oxidation. The Δ14C-CH4 signal was strongly depleted (i.e., old) near the seeps (-993 ± 19/-1050 ± 89‰). Hence, all three isotope systems are consistent with methane release from an old, deep, and likely thermogenic pool to the outer Laptev Sea. This knowledge of what subsea sources are contributing to the observed methane release is a prerequisite to predictions on how these emissions will increase over coming decades and centuries.

13.
Sci Adv ; 6(42)2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33067229

RESUMO

Carbon cycle models suggest that past warming events in the Arctic may have caused large-scale permafrost thaw and carbon remobilization, thus affecting atmospheric CO2 levels. However, observational records are sparse, preventing spatially extensive and time-continuous reconstructions of permafrost carbon release during the late Pleistocene and early Holocene. Using carbon isotopes and biomarkers, we demonstrate that the three most recent warming events recorded in Greenland ice cores-(i) Dansgaard-Oeschger event 3 (~28 ka B.P.), (ii) Bølling-Allerød (14.7 to 12.9 ka B.P.), and (iii) early Holocene (~11.7 ka B.P.)-caused massive remobilization and carbon degradation from permafrost across northeast Siberia. This amplified permafrost carbon release by one order of magnitude, particularly during the last deglaciation when global sea-level rise caused rapid flooding of the land area thereafter constituting the vast East Siberian Arctic Shelf. Demonstration of past warming-induced release of permafrost carbon provides a benchmark for the sensitivity of these large carbon pools to changing climate.

14.
Environ Sci Technol ; 54(19): 11771-11779, 2020 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-32885963

RESUMO

Black carbon (BC) aerosols perturb climate and impoverish air quality/human health-affecting ∼1.5 billion people in South Asia. However, the lack of source-diagnostic observations of BC is hindering the evaluation of uncertain bottom-up emission inventories (EIs) and thereby also models/policies. Here, we present dual-isotope-based (Δ14C/δ13C) fingerprinting of wintertime BC at two receptor sites of the continental outflow. Our results show a remarkable similarity in contributions of biomass and fossil combustion, both from the site capturing the highly populated highly polluted Indo-Gangetic Plain footprint (IGP; Δ14C-fbiomass = 50 ± 3%) and the second site in the N. Indian Ocean representing a wider South Asian footprint (52 ± 6%). Yet, both sites reflect distinct δ13C-fingerprints, indicating a distinguishable contribution of C4-biomass burning from peninsular India (PI). Tailored-model-predicted season-averaged BC concentrations (700 ± 440 ng m-3) match observations (740 ± 250 ng m-3), however, unveiling a systematically increasing model-observation bias (+19% to -53%) through winter. Inclusion of BC from open burning alone does not reconcile predictions (fbiomass = 44 ± 8%) with observations. Direct source-segregated comparison reveals regional offsets in anthropogenic emission fluxes in EIs, overestimated fossil-BC in the IGP, and underestimated biomass-BC in PI, which contributes to the model-observation bias. This ground-truthing pinpoints uncertainties in BC emission sources, which benefit both climate/air-quality modeling and mitigation policies in South Asia.


Assuntos
Poluentes Atmosféricos , Aerossóis/análise , Poluentes Atmosféricos/análise , Ásia , Carbono/análise , Monitoramento Ambiental , Humanos , Oceano Índico , Isótopos , Estações do Ano
15.
Sci Total Environ ; 744: 140359, 2020 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-32688001

RESUMO

Black Carbon (BC) deteriorates air quality and contributes to climate warming, yet its regionally- and seasonally-varying emission sources are poorly constrained. Here we employ natural abundance radiocarbon (14C) measurements of BC intercepted at a northern Malaysia regional receptor site, Bachok, to quantify the relative biomass vs. fossil source contributions of atmospheric BC, in a first year-round study for SE Asia (December 2015-December 2016). The annual average 14C signature suggests as large contributions from biomass burning as from fossil fuel combustion. This is similar to findings from analogous measurements at S Asian receptors sites (~50% biomass burning), while E Asia sites are dominated by fossil emission (~20% biomass burning). The 14C-based source fingerprinting of BC in the dry spring season in SE Asia signals an even more elevated biomass burning contribution (~70% or even higher), presumably from forest, shrub and agricultural fires. This is consistent with this period showing also elevated ratio of organic carbon to BC (up from ~5 to 30) and estimates of BC emissions from satellite fire data. Hence, the present study emphasizes the importance of mitigating dry season vegetation fires in SE Asia.

16.
Proc Natl Acad Sci U S A ; 116(21): 10280-10285, 2019 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-31061130

RESUMO

Climate warming is expected to mobilize northern permafrost and peat organic carbon (PP-C), yet magnitudes and system specifics of even current releases are poorly constrained. While part of the PP-C will degrade at point of thaw to CO2 and CH4 to directly amplify global warming, another part will enter the fluvial network, potentially providing a window to observe large-scale PP-C remobilization patterns. Here, we employ a decade-long, high-temporal resolution record of 14C in dissolved and particulate organic carbon (DOC and POC, respectively) to deconvolute PP-C release in the large drainage basins of rivers across Siberia: Ob, Yenisey, Lena, and Kolyma. The 14C-constrained estimate of export specifically from PP-C corresponds to only 17 ± 8% of total fluvial organic carbon and serves as a benchmark for monitoring changes to fluvial PP-C remobilization in a warming Arctic. Whereas DOC was dominated by recent organic carbon and poorly traced PP-C (12 ± 8%), POC carried a much stronger signature of PP-C (63 ± 10%) and represents the best window to detect spatial and temporal dynamics of PP-C release. Distinct seasonal patterns suggest that while DOC primarily stems from gradual leaching of surface soils, POC reflects abrupt collapse of deeper deposits. Higher dissolved PP-C export by Ob and Yenisey aligns with discontinuous permafrost that facilitates leaching, whereas higher particulate PP-C export by Lena and Kolyma likely echoes the thermokarst-induced collapse of Pleistocene deposits. Quantitative 14C-based fingerprinting of fluvial organic carbon thus provides an opportunity to elucidate large-scale dynamics of PP-C remobilization in response to Arctic warming.

17.
Global Biogeochem Cycles ; 33(1): 2-14, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31007381

RESUMO

Climate warming is expected to destabilize permafrost carbon (PF-C) by thaw-erosion and deepening of the seasonally thawed active layer and thereby promote PF-C mineralization to CO2 and CH4. A similar PF-C remobilization might have contributed to the increase in atmospheric CO2 during deglacial warming after the last glacial maximum. Using carbon isotopes and terrestrial biomarkers (Δ14C, δ13C, and lignin phenols), this study quantifies deposition of terrestrial carbon originating from permafrost in sediments from the Chukchi Sea (core SWERUS-L2-4-PC1). The sediment core reconstructs remobilization of permafrost carbon during the late Allerød warm period starting at 13,000 cal years before present (BP), the Younger Dryas, and the early Holocene warming until 11,000 cal years BP and compares this period with the late Holocene, from 3,650 years BP until present. Dual-carbon-isotope-based source apportionment demonstrates that Ice Complex Deposit-ice- and carbon-rich permafrost from the late Pleistocene (also referred to as Yedoma)-was the dominant source of organic carbon (66 ± 8%; mean ± standard deviation) to sediments during the end of the deglaciation, with fluxes more than twice as high (8.0 ± 4.6 g·m-2·year-1) as in the late Holocene (3.1 ± 1.0 g·m-2·year-1). These results are consistent with late deglacial PF-C remobilization observed in a Laptev Sea record, yet in contrast with PF-C sources, which at that location were dominated by active layer material from the Lena River watershed. Release of dormant PF-C from erosion of coastal permafrost during the end of the last deglaciation indicates vulnerability of Ice Complex Deposit in response to future warming and sea level changes.

18.
Global Biogeochem Cycles ; 33(1): 85-99, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31007382

RESUMO

Ongoing permafrost thaw in the Arctic may remobilize large amounts of old organic matter. Upon transport to the Siberian shelf seas, this material may be degraded and released to the atmosphere, exported off-shelf, or buried in the sediments. While our understanding of the fate of permafrost-derived organic matter in shelf waters is improving, poor constraints remain regarding degradation in sediments. Here we use an extensive data set of organic carbon concentrations and isotopes (n = 109) to inventory terrigenous organic carbon (terrOC) in surficial sediments of the Laptev and East Siberian Seas (LS + ESS). Of these ~2.7 Tg terrOC about 55% appear resistant to degradation on a millennial timescale. A first-order degradation rate constant of 1.5 kyr-1 is derived by combining a previously established relationship between water depth and cross-shelf sediment-terrOC transport time with mineral-associated terrOC loadings. This yields a terrOC degradation flux of ~1.7 Gg/year from surficial sediments during cross-shelf transport, which is orders of magnitude lower than earlier estimates for degradation fluxes of dissolved and particulate terrOC in the water column of the LS + ESS. The difference is mainly due to the low degradation rate constant of sedimentary terrOC, likely caused by a combination of factors: (i) the lower availability of oxygen in the sediments compared to fully oxygenated waters, (ii) the stabilizing role of terrOC-mineral associations, and (iii) the higher proportion of material that is intrinsically recalcitrant due to its chemical/molecular structure in sediments. Sequestration of permafrost-released terrOC in shelf sediments may thereby attenuate the otherwise expected permafrost carbon-climate feedback.

19.
Sci Adv ; 5(1): eaau8066, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30729159

RESUMO

Light-absorbing organic aerosols, known as brown carbon (BrC), counteract the overall cooling effect of aerosols on Earth's climate. The spatial and temporal dynamics of their light-absorbing properties are poorly constrained and unaccounted for in climate models, because of limited ambient observations. We combine carbon isotope forensics (δ13C) with measurements of light absorption in a conceptual aging model to constrain the loss of light absorptivity (i.e., bleaching) of water-soluble BrC (WS-BrC) aerosols in one of the world's largest BrC emission regions-South Asia. On this regional scale, we find that atmospheric photochemical oxidation reduces the light absorption of WS-BrC by ~84% during transport over 6000 km in the Indo-Gangetic Plain, with an ambient first-order bleaching rate of 0.20 ± 0.05 day-1 during over-ocean transit across Bay of Bengal to an Indian Ocean receptor site. This study facilitates dynamic parameterization of WS-BrC absorption properties, thereby constraining BrC climate impact over South Asia.

20.
Natl Sci Rev ; 6(4): 796-809, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34691935

RESUMO

The Tibetan Plateau and its surroundings are known as the Third Pole (TP). This region is noted for its high rates of glacier melt and the associated hydrological shifts that affect water supplies in Asia. Atmospheric pollutants contribute to climatic and cryospheric changes through their effects on solar radiation and the albedos of snow and ice surfaces; moreover, the behavior and fates within the cryosphere and environmental impacts of environmental pollutants are topics of increasing concern. In this review, we introduce a coordinated monitoring and research framework and network to link atmospheric pollution and cryospheric changes (APCC) within the TP region. We then provide an up-to-date summary of progress and achievements related to the APCC research framework, including aspects of atmospheric pollution's composition and concentration, spatial and temporal variations, trans-boundary transport pathways and mechanisms, and effects on the warming of atmosphere and changing in Indian monsoon, as well as melting of glacier and snow cover. We highlight that exogenous air pollutants can enter into the TP's environments and cause great impacts on regional climatic and environmental changes. At last, we propose future research priorities and map out an extended program at the global scale. The ongoing monitoring activities and research facilitate comprehensive studies of atmosphere-cryosphere interactions, represent one of China's key research expeditions to the TP and the polar regions and contribute to the global perspective of earth system science.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...