Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 110(21): 211802, 2013 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-23745861

RESUMO

A minimal extension of the standard model to naturally generate small neutrino masses and provide a dark matter candidate is proposed. The dark matter particle is part of a new scalar doublet field that plays a crucial role in radiatively generating neutrino masses. The symmetry that stabilizes the dark matter also suppresses neutrino masses to appear first at three-loop level. Without the need of right-handed neutrinos or other very heavy new fields, this offers an attractive explanation of the hierarchy between the electroweak and neutrino mass scales. The model has distinct verifiable predictions for the neutrino masses, flavor mixing angles, colliders, and dark matter signals.

2.
Phys Rev Lett ; 99(4): 041301, 2007 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-17678348

RESUMO

One way to unambiguously confirm the existence of particle dark matter and determine its mass would be to detect its annihilation into monochromatic gamma-rays in upcoming telescopes. One of the most minimal models for dark matter is the inert doublet model, obtained by adding another Higgs doublet with no direct coupling to fermions. For a mass between 40 and 80 GeV, the lightest of the new inert Higgs particles can give the correct cosmic abundance of cold dark matter in agreement with current observations. We show that for this scalar dark matter candidate, the annihilation signal of monochromatic gammagamma and Zgamma final states would be exceptionally strong. The energy range and rates for these gamma-ray line signals make them ideal to search for with the soon upcoming GLAST satellite.

3.
Phys Rev Lett ; 95(24): 241301, 2005 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-16384366

RESUMO

We consider the gamma-ray spectrum from neutralino dark matter annihilations and show that internal bremsstrahlung of pair final states gives a previously neglected source of photons at energies near the mass of the neutralino. For masses larger than about 1 TeV, and for present day detector resolutions, this results in a characteristic signal that may dominate not only over the continuous spectrum from W fragmentation, but also over the gammagamma and gammaZ line signals which are known to give large rates for heavy neutralinos. Observational prospects thus seem promising.

4.
Phys Rev Lett ; 94(13): 131301, 2005 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-15903981

RESUMO

A TeV gamma-ray signal from the direction of the Galactic center (GC) has been detected by the HESS experiment. Here, we investigate whether Kaluza-Klein (KK) dark matter annihilations near the GC can be the explanation. Including the contributions from internal bremsstrahlung as well as subsequent decays of quarks and tau leptons, we find a very flat gamma-ray spectrum which drops abruptly at the dark matter particle mass. For a KK mass of about 1 TeV, this gives a good fit to the HESS data below 1 TeV. A similar model, with gauge coupling roughly 3 times as large and a particle mass of about 10 TeV, would give both the correct relic density and a photon spectrum that fits the complete range of data.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...