Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nucl Med Biol ; 126-127: 108389, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37783103

RESUMO

INTRODUCTION: Four terbium isotopes 149,152,155,161Tb emitting various types of radiation can be used for both diagnostics and therapy. 152Tb emits positrons and is ideal for PET. 155Tb is considered a promising Auger emitter and a diagnostic pair for other terbium therapeutic isotopes. Several methods for the production of 155Tb using charged particle accelerators have been proposed, but they all have significant limitations. The restricted availability of this isotope hinders its medical applications. We have proposed a new method for production of 155Tb, irradiating enriched 155Gd by alpha particles. The possibility of simultaneous production of two isotopes of terbium, 152,155Tb, was also studied for more efficient cyclotron beam use. METHODS: Irradiation of 155Gd enriched targets and 155Gd / 151Eu tandem target with alpha-particles with an energy of 54 MeV was carried out at the U-150 cyclotron at the NRC "Kurchatov Institute". The cross sections of nuclear reactions on enr-155Gd were measured by the stack foil technique, detecting the gamma-radiation of the activation products. The separation of rare earth elements was performed by extraction chromatography with the LN Resin. 155Tb was produced via 155Dy decay. RESULTS: The cross sections for the 155,156Tb and 155,157Dy production were measured by the irradiation of a gadolinium target enriched with the 155Gd isotope with alpha-particles in an energy range of 54 → 33 MeV. The yield of 155Dy on a thick target at 54 MeV was 130 MBq/µAh, which makes it possible to obtain 1 GBq of 155Tb in 11 hour-irradiation with 20 µA beam current. The possibility of simultaneous production of 152,155Tb by irradiation of 155Gd and 151Eu tandem target with medium-energy alpha-particles is implemented. Optimal irradiation energy ranges of alpha -particles as 54 → 42 MeV for 155Tb and 42 → 34 MeV for 152Tb were suggested. Product activity and radionuclidic purity were calculated.


Assuntos
Partículas alfa , Térbio , Térbio/química , Partículas alfa/uso terapêutico , Radioisótopos/química , Elétrons
2.
Sci Rep ; 10(1): 508, 2020 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-31949230

RESUMO

Method for production of alpha emitter 149Tb by irradiation of 151Eu with 70 MeV 3He nuclei is proposed. For the first time, the cross sections for the formation of isotopes 149,150,151,152Tb were measured experimentally using a stack foil technique in the 3He particles energy range 70 → 12 MeV. The thick target yield of 149Tb is 39 MBq/µAh, or 230 MBq/µA 149Tb at saturation. The optimal energy range from the point of view of radioisotopic purity is 70 → 40 MeV. At these conditions about 150 MBq/µA 149Tb can be produced in 8 hours irradiation, which is sufficient for therapeutic applications. The main impurities are 150Tb (~100% in activity) and 151Tb (~30% in activity). The proposed method surpasses its counterparts by the high content of the target isotope in the natural mixture and the simplicity of the radiochemical separation of 149Tb from the bulk target material.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...