Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Biomater Sci Polym Ed ; : 1-16, 2024 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-39190633

RESUMO

The treatment of recurrent genital herpes typically involves daily doses of acyclovir for extended periods. Additive manufacturing is an intriguing technique for creating personalised drug delivery systems, which can enhance the effectiveness of treatments for various diseases. The vaginal route offers a viable alternative for the systemic administration of drugs with low oral bioavailability. In this study, we produced different grades of thermoplastic polyurethane (TPU) filaments through hot-melt extrusion, with acyclovir concentrations of 0%, 10%, and 20% by weight. We used fused filament fabrication to manufacture matrix-based devices, including intrauterine devices and intravaginal rings. Our results, obtained through SEM, FTIR, and DSC analyses, confirm the successful incorporation of acyclovir into the matrix. Thermal analysis reveals that the manufacturing process alters the organization of the TPU chains, resulting in a slight reduction in crystallinity. In our in-vitro tests, we observed an initial burst release on the first day, followed by sustained release at reduced rates for up to 145 days, demonstrating their potential for long-term applications. Additionally, cytotoxicity analysis suggests the excellent biocompatibility of the printed devices, and biological assays show a remarkable 99% reduction in HSV-1 replication. In summary, TPU printed devices offer a promising alternative for long-term genital herpes treatment, with the results obtained potentially contributing to the advancement of pharmaceutical manufacturing.

2.
Plants (Basel) ; 12(14)2023 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-37514302

RESUMO

The literature is full of studies reporting environmental and health issues related to using traditional pesticides in food production and storage. Fortunately, alternatives have arisen in the last few decades, showing that organic agriculture is possible and economically feasible. And in this scenario, fungi may be helpful. In the natural environment, when associated with plants, these microorganisms offer plant-growth-promoting molecules, facilitate plant nutrient uptake, and antagonize phytopathogens. It is true that fungi can also be phytopathogenic, but even they can benefit agriculture in some way-since pathogenicity is species-specific, these fungi are shown to be useful against weeds (as bioherbicides). Finally, plant-associated yeasts and molds are natural biofactories, and the metabolites they produce while dwelling in leaves, flowers, roots, or the rhizosphere have the potential to be employed in different industrial activities. By addressing all these subjects, this manuscript comprehensively reviews the biotechnological uses of plant-associated fungi and, in addition, aims to sensitize academics, researchers, and investors to new alternatives for healthier and more environmentally friendly production processes.

3.
Viruses ; 14(11)2022 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-36423110

RESUMO

Herpes viruses are widespread in the human population and can cause many different diseases. Genital herpes is common and can increase the risk of HIV infection and neonatal herpes. Acyclovir is the most used drug for herpes treatment; however, it presents some disadvantages due to its poor oral bioavailability. In this study, some ethylene vinyl acetate devices with different acyclovir amounts (0, 10, and 20 wt.%) were manufactured by fused filament fabrication in two different geometries, an intrauterine device, and an intravaginal ring. Thermal analyses suggested that the crystallinity of EVA decreased up to 8% for the sample loaded with 20 wt.% of acyclovir. DSC, SEM, and FTIR analyses confirmed that the drug was successfully incorporated into the EVA matrix. Moreover, the drug release tests suggested a burst release during the first 24 h followed by a slower release rate sustained up to 80 days. Biological assays showed the biocompatibility of the EVA/ACV device, as well as a 99% reduction in vitro replication of HSV-1. Finally, the EVA presented a suitable performance for 3D printing manufacturing that can contribute to developing personalized solutions for long-term herpes treatment.


Assuntos
Antivirais , Infecções por HIV , Humanos , Recém-Nascido , Aciclovir/farmacologia , Aciclovir/uso terapêutico , Antivirais/farmacologia , Antivirais/uso terapêutico , Genitália , Infecções por HIV/tratamento farmacológico , Impressão Tridimensional , Simplexvirus
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA