Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 1420, 2023 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-36697499

RESUMO

Membrane proteins are the largest group of therapeutic targets in a variety of disease areas and yet, they remain particularly difficult to investigate. We have developed a novel one-step approach for the incorporation of membrane proteins directly from cells into lipid Salipro nanoparticles. Here, with the pannexin1 channel as a case study, we demonstrate the applicability of this method for structure-function analysis using SPR and cryo-EM.


Assuntos
Proteínas de Membrana , Proteínas de Membrana/metabolismo , Microscopia Crioeletrônica/métodos , Membrana Celular/metabolismo
2.
Anal Chem ; 94(2): 1187-1194, 2022 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-34964599

RESUMO

Avidity is an effective and frequent phenomenon employed by nature to achieve extremely high-affinity interactions. As more drug discovery efforts aim to disrupt protein-protein interactions, it is becoming increasingly common to encounter systems that utilize avidity effects and to study these systems using surface-based technologies, such as surface plasmon resonance (SPR) or biolayer interferometry. However, heterogeneity introduced from multivalent binding interactions complicates the analysis of the resulting sensorgram. A frequently applied practice is to fit the data based on a 1:1 binding model, and if the fit does not describe the data adequately, then the experimental setup is changed to favor a 1:1 binding interaction. This reductionistic approach is informative but not always biologically relevant. Therefore, we aimed to develop an SPR-based assay that would reduce the heterogeneity to enable the determination of the kinetic rate constants for multivalent binding interactions using the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein and the human receptor angiotensin-converting enzyme 2 (ACE2) as a model system. We employed a combinatorial approach to generate a sensor surface that could distinguish between monovalent and multivalent interactions. Using advanced data analysis algorithms to analyze the resulting sensorgrams, we found that controlling the surface heterogeneity enabled the deconvolution of the avidity-induced affinity enhancement for the SARS-CoV-2 spike protein and ACE2 interaction.


Assuntos
COVID-19 , Glicoproteína da Espícula de Coronavírus , Enzima de Conversão de Angiotensina 2 , Humanos , Ligação Proteica , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus/metabolismo , Ressonância de Plasmônio de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...