Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 8(1): 9504, 2018 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-29934601

RESUMO

Exoglycosidases are often used for detailed characterization of glycan structures. Bovine kidney α-fucosidase is commonly used to determine the presence of core α1-6 fucose on N-glycans, an important modification of glycoproteins. Recently, several studies have reported that removal of core α1-6-linked fucose from N-glycans labeled with the reactive N-hydroxysuccinimide carbamate fluorescent labels 6-aminoquinolyl-N-hydroxysuccinimidylcarbamate (AQC) and RapiFluor-MS is severely impeded. We report here the cloning, expression and biochemical characterization of an α-fucosidase from Omnitrophica bacterium (termed fucosidase O). We show that fucosidase O can efficiently remove α1-6- and α1-3-linked core fucose from N-glycans. Additionally, we demonstrate that fucosidase O is able to efficiently hydrolyze core α1-6-linked fucose from N-glycans labeled with any of the existing NHS-carbamate activated fluorescent dyes.

2.
MAbs ; 8(2): 340-6, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26514686

RESUMO

Glycosylation affects the efficacy, safety and pharmacokinetics/pharmacodynamics properties of therapeutic monoclonal antibodies (mAbs), and glycoengineering is now being used to produce mAbs with improved efficacy. In this work, a glycoengineered version of rituximab was produced by chemoenzymatic modification to generate human-like N-glycosylation with α 2,6 linked sialic acid. This modified rituximab was comprehensively characterized by liquid chromatography-mass spectrometry and compared to commercially available rituximab. As anticipated, the majority of N-glycans were converted to α 2,6 linked sialic acid, in contrast to CHO-produced rituximab, which only contains α 2,3 linked sialic acid. Typical posttranslational modifications, such as pyro-glutamic acid formation at the N-terminus, oxidation at methionine, deamidation at asparagine, and disulfide linkages were also characterized in both the commercial and glycoengineered mAbs using multiple enzymatic digestion and mass spectrometric analysis. The comparative study reveals that the glycoengineering approach does not cause any additional posttranslational modifications in the antibody except the specific transformation of the glycoforms, demonstrating the mildness and efficiency of the chemoenzymatic approach for glycoengineering of therapeutic antibodies.


Assuntos
Espectrometria de Massas , Ácido N-Acetilneuramínico/química , Rituximab/química , Animais , Células CHO , Cricetinae , Cricetulus , Glicosilação , Humanos
3.
J Vis Exp ; (58): e3749, 2011 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-22230788

RESUMO

Glycosylation, the addition of covalently linked sugars, is a major post-translational modification of proteins that can significantly affect processes such as cell adhesion, molecular trafficking, clearance, and signal transduction. In eukaryotes, the most common glycosylation modifications in the secretory pathway are additions at consensus asparagine residues (N-linked); or at serine or threonine residues (O-linked) (Figure 1). Initiation of N-glycan synthesis is highly conserved in eukaryotes, while the end products can vary greatly among different species, tissues, or proteins. Some glycans remain unmodified ("high mannose N-glycans") or are further processed in the Golgi ("complex N-glycans"). Greater diversity is found for O-glycans, which start with a common N-Acetylgalactosamine (GalNAc) residue in animal cells but differ in lower organisms. The detailed analysis of the glycosylation of proteins is a field unto itself and requires extensive resources and expertise to execute properly. However a variety of available enzymes that remove sugars (glycosidases) makes possible to have a general idea of the glycosylation status of a protein in a standard laboratory setting. Here we illustrate the use of glycosidases for the analysis of a model glycoprotein: recombinant human chorionic gonadotropin beta (hCGß), which carries two N-glycans and four O-glycans. The technique requires only simple instrumentation and typical consumables, and it can be readily adapted to the analysis of multiple glycoprotein samples. Several enzymes can be used in parallel to study a glycoprotein. PNGase F is able to remove almost all types of N-linked glycans. For O-glycans, there is no available enzyme that can cleave an intact oligosaccharide from the protein backbone. Instead, O-glycans are trimmed by exoglycosidases to a short core, which is then easily removed by O-Glycosidase. The Protein Deglycosylation Mix contains PNGase F, O-Glycosidase, Neuraminidase (sialidase), ß1-4 Galactosidase, and ß-N-Acetylglucosaminidase. It is used to simultaneously remove N-glycans and some O-glycans. Finally, the Deglycosylation Mix was supplemented with a mixture of other exoglycosidases (α-N-Acetylgalactosaminidase, α1-2 Fucosidase, α1-3,6 Galactosidase, and ß1-3 Galactosidase), which help remove otherwise resistant monosaccharides that could be present in certain O-glycans. SDS-PAGE/Coomasie blue is used to visualize differences in protein migration before and after glycosidase treatment. In addition, a sugar-specific staining method, ProQ Emerald-300, shows diminished signal as glycans are successively removed. This protocol is designed for the analysis of small amounts of glycoprotein (0.5 to 2 µg), although enzymatic deglycosylation can be scaled up to accommodate larger quantities of protein as needed.


Assuntos
Glicoproteínas/biossíntese , Glicosídeo Hidrolases/metabolismo , Proteínas/metabolismo , Gonadotropina Coriônica Humana Subunidade beta/metabolismo , Eletroforese em Gel de Poliacrilamida/métodos , Glicosilação , Humanos , Modelos Moleculares , Proteínas Recombinantes/metabolismo , Especificidade por Substrato
4.
Glycobiology ; 18(10): 799-805, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18635885

RESUMO

In an effort to identify novel endo-alpha-N-acetylgalactosaminidases (endo-alpha-GalNAcases), four potential genes were cloned. Three of the expressed proteins EngEF from Enterococcus faecalis, EngPA from Propionibacterium acnes, and EngCP from Clostridium perfringens were purified and characterized. Their substrate specificity was investigated and compared to the commercially available endo-alpha-GalNAcases from Streptococcus pneumoniae (EngSP) and Alcaligenes sp. (EngAL). All enzymes were incubated with various synthetic substrates, and natural glycoproteins and the released sugars were detected by colorimetric assay and thin layer chromatography analysis. The Core 1 disaccharide Gal beta 1,3GalNAc alpha 1pNP was the most rapidly hydrolyzed substrate by all enzymes tested. EngEF exhibited the highest k(cat) for this substrate. EngEF and EngPA were also able to fully hydrolyze the Core 3 disaccharide GlcNAc beta 1,3GalNAc alpha 1pNP. This is the first report of endo-alpha-GalNAcases EngEF and EngPA acting on Core 3 in addition to Core 1 O-glycans. Interestingly, there were no significant differences in transglycosylation activities when Gal beta 1,3GalNAc alpha 1pNP or GlcNAc beta 1,3GalNAc alpha 1pNP was incubated with various 1-alkanols in the presence of the endo-alpha-GalNAcases tested in this work.


Assuntos
alfa-N-Acetilgalactosaminidase/metabolismo , Cromatografia em Camada Fina , Clonagem Molecular , Clostridium perfringens/enzimologia , Enterococcus faecalis/enzimologia , Glicosilação , Cinética , Especificidade por Substrato , alfa-N-Acetilgalactosaminidase/genética
5.
Microbiology (Reading) ; 144 ( Pt 3): 727-738, 1998 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-9534242

RESUMO

In Streptomyces coelicolor A3(2), bldA mutants that lack the tRNA for the rare leucine codon UUA fail to make the red undecylprodigiosin antibiotic complex. To find out why, red-pigmented while bald (Pwb) derivatives of a bldA mutant were isolated. Using a cloning strategy that allowed for (and demonstrated) dominance of the mutations, they were localized to the red gene cluster. By using insert-mediated integration of a phi C31 phage-based vector, one of the Pwb mutations was more precisely located between red structural genes to a segment of approximately 1 kb about 4 kb from the known pathway-specific regulatory gene redD. The segment contained most of an ORF (redZ) encoding a protein (RedZ) with end-to-end similarity to response regulators of diverse function from a variety of bacteria. Remarkably, in RedZ hydrophobic residues replace nearly all of the charged residues that usually make up the phosphorylation pocket present in typical response regulators, including the aspartic acid residue that is normally phosphorylated by a cognate sensory protein kinase. A single TTA codon in redZ provided a potential explanation for the bldA-dependence of undecylprodigiosin synthesis. This codon was unchanged in three Pwb mutants, but further analysis of one of the mutants revealed a potential up-promoter mutation. It seems possible that a combination of low-level natural translation of the UUA codon by a charged non-cognate tRNA, coupled with increased transcription of redZ in the Pwb mutant allows the accumulation of a threshold level of the RedD protein.


Assuntos
Antibacterianos/biossíntese , Proteínas de Bactérias , Regulação Bacteriana da Expressão Gênica , Streptomyces/genética , Transativadores/genética , Sequência de Aminoácidos , Sequência de Bases , Códon , Genes Bacterianos , Vetores Genéticos , Modelos Genéticos , Dados de Sequência Molecular , Mutagênese Insercional , Fosforilação , Filogenia , Prodigiosina/análogos & derivados , Prodigiosina/biossíntese , Regiões Promotoras Genéticas , RNA Bacteriano , RNA de Transferência de Leucina/genética , Análise de Sequência de DNA , Streptomyces/crescimento & desenvolvimento , Streptomyces/metabolismo , Transativadores/química , Transativadores/metabolismo , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...