Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Physiol Plant ; 174(2): e13675, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35316539

RESUMO

In agriculture, plant growth promoting bacteria (PGPB) are increasingly used for reducing environmental stress-related crop losses through mutualistic actions of these microorganisms, activating physiological and biochemical responses, building tolerances within their hosts. Here we report the use of radioactive carbon-11 (t½ 20.4 min) to examine the metabolic and physiological responses of Zea mays to Azospirillum brasilense (HM053) inoculation while plants were subjected to salinity and low nitrogen stresses. Host metabolism of "new" carbon resources (as 11 C) and physiology including [11 C]-photosynthate translocation were measured in response to imposed growth conditions. Salinity stress caused shortened, dense root growth with a 6-fold increase in foliar [11 C]-raffinose, a potent osmolyte. ICP-MS analyses revealed increased foliar Na+ levels at the expense of K+ . HM053 inoculation relieved these effects, reinstating normal root growth, lowering [11 C]-raffinose levels while increasing [11 C]-sucrose and its translocation to the roots. Na+ levels remained elevated with inoculation, but K+ levels were boosted slightly. Low nitrogen stress yielded longer roots possessing high levels of anthocyanins. Metabolic analysis revealed significant shifts in "new" carbon partitioning into the amino acid pool under low nitrogen stress, with significant increases in foliar [11 C]-glutamate, [11 C]-aspartate, and [11 C]-asparagine, a noted osmoprotectant. 11 CO2 fixation and [11 C]-photosynthate translocation also decreased, limiting carbon supply to roots. However, starch levels in roots were reduced under nitrogen limitation, suggesting that carbon repartitioning could be a compensatory action to support root growth. Finally, inoculation with HM053 re-instated normal root growth, reduced anthocyanin, boosted root starch, and returned 11 C-allocation levels back to those of unstressed plants.


Assuntos
Azospirillum brasilense , Raízes de Plantas , Antocianinas/metabolismo , Azospirillum brasilense/metabolismo , Carbono/metabolismo , Radioisótopos de Carbono , Nitrogênio/metabolismo , Raízes de Plantas/metabolismo , Rafinose/metabolismo , Amido/metabolismo
2.
Plants (Basel) ; 11(3)2022 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-35161222

RESUMO

In agriculture, boron is known to play a critical role in healthy plant growth. To dissect the role of boron in maize metabolism, radioactive carbon-11 (t½ 20.4 min) was used to examine the physiological and metabolic responses of 3-week-old B73 maize plants to different levels of boron spanning 0 mM, 0.05 mM, and 0.5 mM boric acid (BA) treatments. Growth behavior, of both shoots and roots, was recorded and correlated to plant physiological responses. 11CO2 fixation, leaf export of [11C]-photosynthates, and their rate of transport increased systematically with increasing BA concentrations, while the fraction of [11C]-photosynthates delivered to the roots under 0 mM and 0.5 mM BA treatments was lower than under 0.05 mM BA treatment, likely due to changes in root growth. Additionally, solid-phase extraction coupled with gamma counting, radio-fluorescence thin layer chromatography, and radio-fluorescence high-performance liquid chromatography techniques applied to tissue extracts provided insight into the effects of BA treatment on 'new' carbon (as 11C) metabolism. Most notable was the strong influence reducing boron levels had on raising 11C partitioning into glutamine, aspartic acid, and asparagine. Altogether, the growth of maize under different regimes of boron affected 11CO2 fixation, its metabolism and allocation belowground, and altered root growth. Finally, inductively coupled plasma mass spectrometry provided insight into the effects of BA treatment on plant uptake of other essential nutrients. Here, levels of boron and zinc systematically increased in foliar tissues with increasing BA concentration. However, levels of magnesium, potassium, calcium, manganese, and iron remained unaffected by treatment. The rise in foliar zinc levels with increased BA concentration may contribute to improved 11CO2 fixation under these conditions.

3.
Int J Mol Sci ; 21(3)2020 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-32024118

RESUMO

Boron (B) is an essential plant micronutrient. Deficiencies of B have drastic consequences on plant development leading to crop yield losses and reductions in root and shoot growth. Understanding the molecular and cellular consequences of B deficiency is challenging, partly because of the limited availability of B imaging techniques. In this report we demonstrate the efficacy of using 4-fluorophenylboronic acid (FPBA) as a B imaging agent, which is a derivative of the B deficiency mimic phenylboronic acid (PBA). We show that radioactively labelled [18F]FPBA (t½=110 m) accumulates at the root tip, the root elongation zone and at lateral root initiation sites in maize roots, and also translocates to the shoot where it accumulates along the leaf edges. Treatment of maize seedlings using FPBA and PBA causes a shortened primary root phenotype with absence of lateral roots in a dose-dependent manner. The primary root defects can be partially rescued by the addition of boric acid indicating that PBA can be used to induce B deficiency in maize and that radioactively labelled FPBA can be used to image sites of B demand on a tissue level.


Assuntos
Boro/metabolismo , Ácidos Borônicos/metabolismo , Fluordesoxiglucose F18/metabolismo , Imagem Molecular/métodos , Traçadores Radioativos , Compostos Radiofarmacêuticos/metabolismo , Zea mays/metabolismo , Boro/análise , Meristema/crescimento & desenvolvimento , Meristema/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Zea mays/crescimento & desenvolvimento
4.
Appl Radiat Isot ; 140: 252-261, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30075457

RESUMO

Quantitative neutron capture radiography (QNCR) of 10B found in pre-dried maize samples has been conducted. Calibration standards constructed from filter paper mimicked plant tissues to reduce confounding matrix effects. A mathematical track elimination method improves the LOD as well as the visual contrast image at low boron concentration levels. The LOD for total boron is 1.7 µg/g in a 4 mm2 region of interest (ROI). The w(B) in five individual maize tassel meristems has been determined to be 14.9 µg/g - 21.2 µg/g.


Assuntos
Boro/metabolismo , Zea mays/metabolismo , Boro/análise , Calibragem , Limite de Detecção , Meristema/metabolismo , Nêutrons , Folhas de Planta/metabolismo , Radiografia/métodos , Radiografia/estatística & dados numéricos , Distribuição Tecidual
5.
J Cereb Blood Flow Metab ; 37(1): 188-200, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-26681768

RESUMO

Matrix metalloproteinases (MMPs), particularly gelatinases (MMP-2/-9), are involved in neurovascular impairment after stroke. Detection of gelatinase activity in vivo can provide insight into blood-brain barrier disruption, hemorrhage, and nerve cell injury or death. We applied gelatinase-activatable cell-penetrating peptides (ACPP) with a cleavable l-amino acid linker to examine gelatinase activity in primary neurons in culture and ischemic mouse brain in vivo We found uptake of Cy5-conjugated ACPP (ACPP-Cy5) due to gelatinase activation both in cultured neurons exposed to n-methyl-d-aspartate and in mice after cerebral ischemia. Fluorescence intensity was significantly reduced when cells or mice were treated with MMP inhibitors or when a cleavage-resistant ACPP-Cy5 was substituted. We also applied an ACPP dendrimer (ACPPD) conjugated with multiple Cy5 and/or gadolinium moieties for fluorescence and magnetic resonance imaging (MRI) in intact animals. Fluorescence analysis showed that ACPPD was detected in sub-femtomole range in ischemic tissues. Moreover, MRI and inductively coupled plasma mass spectrometry revealed that ACPPD produced quantitative measures of gelatinase activity in the ischemic region. The resulting spatial pattern of gelatinase activity and neurodegeneration were very similar. We conclude that ACPPs are capable of tracing spatiotemporal gelatinase activity in vivo, and will therefore be useful in elucidating mechanisms of gelatinase-mediated neurodegeneration after stroke.


Assuntos
Peptídeos Penetradores de Células/química , Gelatinases/análise , Acidente Vascular Cerebral/diagnóstico por imagem , Animais , Isquemia Encefálica/diagnóstico por imagem , Carbocianinas/química , Células Cultivadas , Gelatinases/metabolismo , Imageamento por Ressonância Magnética/métodos , Metaloproteinase 2 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Camundongos , Sondas Moleculares/química , Doenças Neurodegenerativas/diagnóstico por imagem , Doenças Neurodegenerativas/etiologia , Acidente Vascular Cerebral/complicações , Acidente Vascular Cerebral/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...