Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Int J Mol Sci ; 25(9)2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38732252

RESUMO

Several studies have shown an inverse correlation between the likelihood of developing a neurodegenerative disorder and cancer. We previously reported that the levels of amyloid beta (Aß), at the center of Alzheimer's disease pathophysiology, are regulated by acetylcholinesterase (AChE) in non-small cell lung cancer (NSCLC). Here, we examined the effect of Aß or its fragments on the levels of ACh in A549 (p53 wild-type) and H1299 (p53-null) NSCLC cell media. ACh levels were reduced by cell treatment with Aß 1-42, Aß 1-40, Aß 1-28, and Aß 25-35. AChE and p53 activities increased upon A549 cell treatment with Aß, while knockdown of p53 in A549 cells increased ACh levels, decreased AChE activity, and diminished the Aß effects. Aß increased the ratio of phospho/total p38 MAPK and decreased the activity of PKC. Inhibiting p38 MAPK reduced the activity of p53 in A549 cells and increased ACh levels in the media of both cell lines, while opposite effects were found upon inhibiting PKC. ACh decreased the activity of p53 in A549 cells, decreased p38 MAPK activity, increased PKC activity, and diminished the effect of Aß on those activities. Moreover, the negative effect of Aß on cell viability was diminished by cell co-treatment with ACh.


Assuntos
Acetilcolina , Peptídeos beta-Amiloides , Carcinoma Pulmonar de Células não Pequenas , Sobrevivência Celular , Neoplasias Pulmonares , Proteína Quinase C , Proteína Supressora de Tumor p53 , Proteínas Quinases p38 Ativadas por Mitógeno , Humanos , Células A549 , Acetilcolina/metabolismo , Acetilcolina/farmacologia , Acetilcolinesterase/metabolismo , Peptídeos beta-Amiloides/metabolismo , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Carcinoma Pulmonar de Células não Pequenas/genética , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/genética , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Proteína Quinase C/metabolismo , Proteína Supressora de Tumor p53/metabolismo
2.
Sci Rep ; 14(1): 4921, 2024 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-38418632

RESUMO

Previously, we found that the levels of soluble amyloid precursor protein α (sAPPα) are regulated, in part, by acetylcholinesterase (AChE) in human A549 (p53 wild-type) and H1299 (p53-null) NSCLC cell lines. In this study, we found regulation of sAPPα levels in the media by leptin, a widely recognized obesity-associated adipokine that has recently been shown to play a possible role in cancer signaling. Increased levels of sAPPα, that were accompanied by lower Aß40/42 levels in the media of A549 and H1299 cells, were detected upon cell incubation with leptin. Conversely, knockdown of leptin or its receptor led to reduced levels of sAPPα and increased levels of Aß40/42 in the media of A549 and H1299 cells, suggesting that leptin likely shifts APP processing toward the non-amyloidogenic pathway. A549 cell treatment with leptin increased acetylcholine levels and blocked the activities of AChE and p53. Treatment with leptin resulted in increased activation of PKC, ERK1/2, PI3K, and the levels of sAPPα, effects that were reversed by treatment with kinase inhibitors and/or upon addition of AChE to A549 and H1299 cell media. Cell viability increased by treatment of A549 and H1299 cells with leptin and decreased upon co-treatment with AChE and/or inhibitors targeting PKC, ERK1/2, and PI3K. This study is significant as it provides evidence for a likely carcinogenic role of leptin in NSCLC cells via upregulation of sAPPα levels in the media, and highlights the importance of targeting leptin as a potential therapeutic strategy for NSCLC treatment.


Assuntos
Precursor de Proteína beta-Amiloide , Neoplasias Pulmonares , Humanos , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Leptina/metabolismo , Acetilcolinesterase/metabolismo , Proteína Supressora de Tumor p53/genética , Fosfatidilinositol 3-Quinases/metabolismo
3.
Cancers (Basel) ; 15(23)2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-38067204

RESUMO

In addition to binding to nicotinic acetylcholine receptors (nAChRs), nicotine is known to regulate the ß-adrenergic receptors (ß-ARs) promoting oncogenic signaling. Using A549 (p53 wild-type) and H1299 (p53-null) lung cancer cells, we show that nicotine treatment led to: increased adrenaline/noradrenaline levels, an effect blocked by treatment with the α7nAChR inhibitor (α-BTX) but not by the ß-blocker (propranolol) or the α4ß2nAChR antagonist (DhßE); decreased GABA levels in A549 and H1299 cell media, an effect blocked by treatment with DhßE; increased VEGF levels and PI3K/AKT activities, an effect diminished by cell co-treatment with α-BTX, propranolol, and/or DhßE; and inhibited p53 activity in A549 cells, that was reversed, upon cell co-treatment with α-BTX, propranolol, and/or DhßE or by VEGF immunodepletion. VEGF levels increased upon cell treatment with nicotine, adrenaline/noradrenaline, and decreased with GABA treatment. On the other hand, the p53 activity decreased in A549 cells treated with nicotine, adrenaline/noradrenaline and increased upon cell incubation with GABA. Knockdown of p53 led to increased VEGF levels in the media of A549 cells. The addition of anti-VEGF antibodies to A549 and H1299 cells decreased cell viability and increased apoptosis; blocked the activities of PI3K, AKT, and NFκB in the absence or presence of nicotine; and resulted in increased p53 activation in A549 cells. We conclude that VEGF can be upregulated via α7nAChR and/or ß-ARs and downregulated via GABA and/or p53 in response to the nicotine treatment of NSCLC cells.

4.
Biomedicines ; 11(9)2023 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-37760996

RESUMO

The ectodomain of the transmembrane protein E-cadherin can be cleaved and released in a soluble form referred to as soluble E-cadherin, or sE-cad, accounting for decreased E-cadherin levels at the cell surface. Among the proteases implicated in this cleavage are matrix metalloproteases (MMP), including MMP9. Opposite functions have been reported for full-length E-cadherin and sE-cad. In this study, we found increased MMP9 levels in the media of two non-small cell lung cancer (NSCLC) cell lines, A549 and H1299, treated with BDNF, nicotine, or epinephrine that were decreased upon cell treatment with the ß-adrenergic receptor blocker propranolol. Increased MMP9 levels correlated with increased sE-cad levels in A549 cell media, and knockdown of MMP9 in A549 cells led to downregulation of sE-cad levels in the media. Previously, we reported that A549 and H1299 cell viability increased with nicotine and/or BDNF treatment and decreased upon treatment with propranolol. In investigating the function of sE-cad, we found that immunodepletion of sE-cad from the media of A549 cells untreated or treated with BDNF, nicotine, or epinephrine reduced activation of EGFR and IGF-1R, decreased PI3K and ERK1/2 activities, increased p53 activation, decreased cell viability, and increased apoptosis, while no effects were found using H1299 cells under all conditions tested.

5.
Cells ; 12(3)2023 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-36766747

RESUMO

Cisplatin is a platinum agent used in the treatment of non-small cell lung cancer (NSCLC). Much remains unknown regarding the basic operative mechanisms underlying cisplatin resistance in NSCLC. In this study, we found that phosphorylation of IGFBP-3 by CK2 (P-IGFBP-3) decreased its binding to hyaluronan (HA) but not to IGF-1 and rendered the protein less effective at reducing cell viability or increasing apoptosis than the non-phosphorylated protein with or without cisplatin in the human NSCLC cell lines, A549 and H1299. Our data suggest that blocking CD44 signaling augmented the effects of cisplatin and that IGFBP-3 was more effective at inhibiting HA-CD44 signaling than P-IGFBP-3. Blocking CK2 activity and HA-CD44 signaling increased cisplatin sensitivity and more effectively blocked the PI3K and AKT activities and the phospho/total NFκB ratio and led to increased p53 activation in A549 cells. Increased cell sensitivity to cisplatin was observed upon co-treatment with inhibitors targeted against PI3K, AKT, and NFκB while blocking p53 activity decreased A549 cell sensitivity to cisplatin. Our findings shed light on a novel mechanism employed by CK2 in phosphorylating IGFBP-3 and increasing cisplatin resistance in NSCLC. Blocking phosphorylation of IGFBP-3 by CK2 may be an effective strategy to increase NSCLC sensitivity to cisplatin.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Cisplatino/farmacologia , Cisplatino/metabolismo , Caseína Quinase II/metabolismo , Fosforilação , Ácido Hialurônico/metabolismo , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteína 3 de Ligação a Fator de Crescimento Semelhante à Insulina/metabolismo , Sobrevivência Celular , Proteína Supressora de Tumor p53/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Receptores de Hialuronatos/metabolismo
6.
Int J Mol Sci ; 23(21)2022 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-36361620

RESUMO

It is well-recognized that cigarette smoking is a primary risk factor in the development of non-small cell lung cancer (NSCLC), known to account for ~80% of all lung cancers with nicotine recognized as the major addictive component. In investigating the effect of nicotine, brain-derived neurotrophic factor (BDNF), and the ß-adrenergic receptor blocker, propranolol, on sensitivity of NSCLC cell lines, A549 and H1299, to cisplatin, we found increased cell viability, and enhanced cisplatin resistance with nicotine and/or BDNF treatment while opposite effects were found upon treatment with propranolol. Cell treatment with epinephrine or nicotine led to EGFR and IGF-1R activation, effects opposite to those found with propranolol. Blocking EGFR and IGF-1R activation increased cell sensitivity to cisplatin in both cell lines. PI3K and AKT activities were upregulated by nicotine or BDNF and downregulated by cell treatment with inhibitors against EGFR and IGF-1R and by propranolol. Apoptosis and cell sensitivity to cisplatin increased upon co-treatment of cells with cisplatin and inhibitors against PI3K or AKT. Our findings shed light on an interplay between nicotine, BDNF, and ß-Adrenergic receptor signaling in regulating survival of lung cancer cells and chemoresistance which can likely expand therapeutic opportunities that target this regulatory network in the future.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/metabolismo , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Cisplatino/farmacologia , Cisplatino/uso terapêutico , Nicotina/farmacologia , Fator Neurotrófico Derivado do Encéfalo/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptores ErbB/metabolismo , Propranolol/farmacologia , Propranolol/uso terapêutico , Antagonistas Adrenérgicos/farmacologia , Resistencia a Medicamentos Antineoplásicos , Fosfatidilinositol 3-Quinases/metabolismo , Receptores Adrenérgicos beta , Linhagem Celular Tumoral
7.
Cells ; 11(22)2022 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-36428962

RESUMO

In this study, we examined the roles of heparanase and IGFBP-3 in regulating A549 and H1299 non-small-cell lung cancer (NSCLC) survival. We found that H1299 cells, known to be p53-null with no expression of IGFBP-3, had higher heparanase levels and activity and higher levels of heparan sulfate (HS) in the media compared to the media of A549 cells. Inhibiting heparanase activity or its expression using siRNA had no effect on the levels of IGFBP-3 in the media of A549 cells, reduced the levels of soluble HS fragments, and led to decreased interactions between IGFBP-3 and HS in the media. HS competed with HA for binding to IGFBP-3 or IGFBP-3 peptide (215-KKGFYKKKQCRPSKGRKR-232) but not the mutant peptide (K228AR230A). HS abolished the cytotoxic effects of IGFBP-3 but not upon blocking HA-CD44 signaling with the anti-CD44 antibody (5F12). Blocking HA-CD44 signaling decreased the levels of heparanase in the media of both A549 and H1299 cell lines and increased p53 activity and the levels of IGFBP-3 in A549 cell media. Knockdown of p53 led to increased heparanase levels and reduced IGFBP-3 levels in A549 cell media while knockdown of IGFBP-3 in A549 cells blocked p53 activity and increased heparanase levels in the media.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Células A549 , Sobrevivência Celular , Heparitina Sulfato/metabolismo , Proteína 3 de Ligação a Fator de Crescimento Semelhante à Insulina , Neoplasias Pulmonares/metabolismo , Peptídeos/metabolismo , Proteína Supressora de Tumor p53
8.
Int J Mol Sci ; 23(18)2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-36142659

RESUMO

In comparing two human lung cancer cells, we previously found lower levels of acetylcholinesterase (AChE) and intact amyloid-ß40/42 (Aß), and higher levels of mature brain-derived neurotrophic factor (mBDNF) in the media of H1299 cells as compared to A549 cell media. In this study, we hypothesized that the levels of soluble amyloid precursor protein α (sAPPα) are regulated by AChE and mBDNF in A549 and H1299 cell media. The levels of sAPPα were higher in the media of H1299 cells. Knockdown of AChE led to increased sAPPα and mBDNF levels and correlated with decreased levels of intact Aß40/42 in A549 cell media. AChE and mBDNF had opposite effects on the levels of Aß and sAPPα and were found to operate through a mechanism involving α-secretase activity. Treatment with AChE decreased sAPPα levels and simultaneously increased the levels of intact Aß40/42 suggesting a role of the protein in shifting APP processing away from the non-amyloidogenic pathway and toward the amyloidogenic pathway, whereas treatment with mBDNF led to opposite effects on those levels. We also show that the levels of sAPPα are regulated by protein kinase C (PKC), extracellular signal-regulated kinase (ERK)1/2, phosphoinositide 3 Kinase (PI3K), but not by protein kinase A (PKA).


Assuntos
Doença de Alzheimer , Neoplasias Pulmonares , Acetilcolinesterase , Secretases da Proteína Precursora do Amiloide/metabolismo , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Fator Neurotrófico Derivado do Encéfalo , Proteínas Quinases Dependentes de AMP Cíclico , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Humanos , Fosfatidilinositol 3-Quinase , Fosfatidilinositol 3-Quinases , Proteína Quinase C/metabolismo
9.
Int J Mol Sci ; 22(13)2021 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-34209215

RESUMO

Brain-derived neurotrophic factor (BDNF), a member of the neurotrophin family, has been linked to several human malignancies and shown to promote tumorigenesis. The purpose of this study was to explore the relative abundance of pro-brain-derived neurotrophic factor (proBDNF) and mature BDNF (mBDNF) in A549 (p53 wild-type) and H1299 (p53-null) lung cancer cell media. Higher levels of proBDNF were detected in the media of A549 cells than in H1299 cell media. Using inhibitors, we found that the levels of proBDNF and mBDNF in the media are likely regulated by PI3K, AKT, and NFκB. However, the largest change in these levels resulted from MMP2/9 inhibition. Blocking p53 function in A549 cells resulted in increased mBDNF and decreased proBDNF, suggesting a role for p53 in regulating these levels. The ratio of proBDNF/mBDNF was not affected by MMP2 knockdown but increased in the media of both cell lines upon knockdown of MMP9. Downregulation of either MMP2 or MMP9 by siRNA showed that MMP9 siRNA treatment of either A549 or H1299 cells resulted in decreased cell viability and increased apoptosis, an effect diminished upon the same treatment with proBDNF immunodepleted media, suggesting that MMP9 regulates the cytotoxic effects induced by proBDNF in lung cancer cells.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/metabolismo , Meios de Cultura/metabolismo , Neoplasias Pulmonares/metabolismo , Proteína Supressora de Tumor p53/genética , Regulação para Cima , Células A549 , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Pulmonares/genética , Metaloproteinase 2 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Mutação , NF-kappa B/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais
10.
Sci Rep ; 11(1): 9708, 2021 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-33958632

RESUMO

In this study, we set out to identify regulators of intact amyloid-ß40/42 (Aß) levels in A549 (p53 wild-type) and H1299 (p53-null) lung cancer cell media. Higher Aß levels were detected in the media of A549 than H1299 cells without or with treatment with 4-methylumbelliferone (4-MU) and/or the anti-CD44 antibody (5F12). Using inhibitors, we found that PI3K, AKT, and NFκB are likely involved in regulating Aß levels in the media. However, increased Aß levels that more closely resembled those found upon 4-MU co-treatment resulted from MMP2/9 inhibition, suggesting that MMP2/9 maybe the main contributors to regulation of Aß levels in the media. Differences in Aß levels might be accounted for, in part, by p53 since blocking p53 function in A549 cells resulted in decreased Aß levels, increased MMP2/9 levels, increased PI3K/AKT activities and the phospho/total NFκB ratio. Using siRNA targeted against MMP2 or MMP9, we found increased Aß levels in the media, however, MMP2 knockdown led to Aß levels closely mimicking those detected by co-treatment with 4-MU. Cell viability or apoptosis upon treatment with either MMP2 or MMP9 siRNA along with Aß immunodepletion, showed that MMP2 is the predominant regulator of the cytotoxic effects induced by Aß in lung cancer cells.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Neoplasias Pulmonares/metabolismo , Metaloproteinase 2 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/farmacologia , Benzotiazóis/farmacologia , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Meios de Cultivo Condicionados , Humanos , Receptores de Hialuronatos/imunologia , Himecromona/farmacologia , Neoplasias Pulmonares/patologia , Metaloproteinase 2 da Matriz/genética , NF-kappa B/metabolismo , RNA Interferente Pequeno/genética , Tolueno/análogos & derivados , Tolueno/farmacologia
11.
FEBS Open Bio ; 10(12): 2805-2823, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33145964

RESUMO

Humanin (HN) is known to bind amyloid beta (Aß)-inducing cytoprotective effects, while binding of acetylcholinesterase (AChE) to Aß increases its aggregation and cytotoxicity. Previously, we showed that binding of HN to Aß blocks aggregation induced by AChE and that HN decreases but does not abolish Aß-AChE interactions in A549 cell media. Here, we set out to shed light on factors that modulate the interactions of Aß with HN and AChE. We found that binding of either HN or AChE to Aß is not affected by heparan sulfate, while ATP, thought to reduce misfolding of Aß, weakened interactions between AChE and Aß but strengthened those between Aß and HN. Using media from either A549 or H1299 lung cancer cells, we observed that more HN was bound to Aß upon addition of ATP, while levels of AChE in a complex with Aß were decreased by ATP addition to A549 cell media. Exogenous addition of ATP to either A549 or H1299 cell media increased interactions of endogenous HN with Aß to a comparable extent despite differences in AChE expression in the two cell lines, and this was correlated with decreased binding of exogenously added HN to Aß. Treatment with exogenous ATP had no effect on cell viability under all conditions examined. Exogenously added ATP did not affect viability of cells treated with AChE-immunodepleted media, and there was no apparent protection against the cytotoxicity resulting from immunodepletion of HN. Moreover, exogenously added ATP had no effect on the relative abundance of oligomer versus total Aß in either cell line.


Assuntos
Acetilcolinesterase/metabolismo , Trifosfato de Adenosina/metabolismo , Peptídeos beta-Amiloides/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Humanos , Células Tumorais Cultivadas
12.
FEBS Open Bio ; 10(8): 1668-1684, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32592613

RESUMO

IGFBP-3, the most abundant IGFBP and the main carrier of insulin-like growth factor I (IGF-I) in the circulation, can bind IGF-1 with high affinity, which attenuates IGF/IGF-IR interactions, thereby resulting in antiproliferative effects. The C-terminal domain of insulin-like growth factor-binding protein-3 (IGFBP-3) is known to contain an 18-basic amino acid motif capable of interacting with either humanin (HN) or hyaluronan (HA). We previously showed that the 18-amino acid IGFBP-3 peptide is capable of binding either HA or HN with comparable affinities to the full-length IGFBP-3 protein and that IGFBP-3 can compete with the HA receptor, CD44, for binding HA. Blocking the interaction between HA and CD44 reduced viability of A549 human lung cancer cells. In this study, we set out to better characterize IGFBP-3-HA interactions. We show that both stereochemistry and amino acid identity are important determinants of the interaction between the IGFBP-3 peptide and HA and for the peptide's ability to exert its cytotoxic effects. Binding of IGFBP-3 to either HA or HN was unaffected by glycosylation or reduction of IGFBP-3, suggesting that the basic 18-amino acid residue sequence of IGFBP-3 remains accessible for interaction with either HN or HA upon glycosylation or reduction of the full-length protein. Removing N-linked oligosaccharides from CD44 increased its ability to compete with IGFBP-3 for binding HA, while reduction of CD44 rendered the protein relatively ineffective at blocking IGFBP-3-HA interactions. We conclude that both deglycosylation and disulfide bond formation are important for CD44 to compete with IGFBP-3 for binding HA.


Assuntos
Ácido Hialurônico/metabolismo , Proteína 3 de Ligação a Fator de Crescimento Semelhante à Insulina/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Células A549 , Dissulfetos/química , Dissulfetos/metabolismo , Glicosilação , Humanos , Receptores de Hialuronatos/química , Receptores de Hialuronatos/metabolismo , Ácido Hialurônico/química , Proteína 3 de Ligação a Fator de Crescimento Semelhante à Insulina/química , Peptídeos e Proteínas de Sinalização Intracelular/química
13.
Biochemistry ; 59(21): 1981-2002, 2020 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-32383868

RESUMO

It is known that the humanin (HN) peptide binding to amyloid-ß (Aß) protects against its cytotoxic effects, while acetylcholinesterase (AChE) binding to Aß increases its aggregation and cytotoxicity. HN is also known to bind the insulin-like growth factor binding protein-3 (IGFBP-3). Here, we examined the regulation of Aß conformations by HN, AChE, and IGFBP-3 both in vitro and in the conditioned media from A549 and H1299 lung cancer cells. Our in vitro results showed the following: IGFBP-3 binds HN and blocks it from binding Aß in the absence or presence of AChE; HN and AChE can simultaneously bind Aß but not when in the presence of IGFBP-3; HN is unable to reduce the aggregation of Aß in the presence of IGFBP-3; and HN abolishes the aggregation of Aß induced by the addition of AChE in the absence of IGFBP-3. In the media, AChE and HN can simultaneously bind Aß. While both AChE and HN are detected when using 6E10 Aß antibodies, only AChE is detected when using the Aß 17-24 antibody 4G8, the anti-oligomer A11, and the anti-amyloid fibril LOC antibodies. No signal was observed for IGFBP-3 with any of the anti-amyloid antibodies used. Exogenously added IGFBP-3 reduced the amount of HN found in a complex when using 6E10 antibodies and correlated with a concomitant increase in the amyloid oligomers. Immunodepletion of HN from the media of the A549 and H1299 cells increased the relative abundance of the oligomer vs the total amount of Aß, the A11-positive prefibrillar oligomers, and to a lesser extent the LOC-positive fibrillar oligomers, and was also correlated with diminished cell viability and increased apoptosis.


Assuntos
Acetilcolinesterase/metabolismo , Peptídeos beta-Amiloides/metabolismo , Proteína 3 de Ligação a Fator de Crescimento Semelhante à Insulina/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Humanos , Agregados Proteicos , Células Tumorais Cultivadas
14.
Sci Rep ; 10(1): 5083, 2020 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-32193421

RESUMO

Insulin-like growth factor binding protein-3 (IGFBP-3) belongs to a family of six IGF binding proteins. We previously found that IGFBP-3 exerts its cytotoxic effects on A549 (p53 wild-type) cell survival through a mechanism that depends on hyaluronan-CD44 interactions. To shed light on the mechanism employed, we used CD44-negative normal human lung cells (HFL1), A549, and H1299 (p53-null) lung cancer cells. A synthetic IGFBP-3 peptide (215-KKGFYKKKQCRPSKGRKR-232) but not the mutant (K228AR230A), was able to bind hyaluronan more efficiently than the analogous sequences from the other IGFBPs. In a manner comparable to that of the IGFBP-3 protein, the peptide blocked hyaluronan-CD44 signaling, and more effectively inhibited viability of A549 cells than viability of either H1299 or HFL1 cell lines. Treatment with the IGFBP-3 protein or its peptide resulted in increased acetylcholinesterase concentration and activity in the A549 cell media but not in the media of either HFL1 or H1299, an effect that correlated with increased apoptosis and decreased cell viability. These effects were diminished upon the same treatment of A549 cells transfected with either p53 siRNA or acetylcholinesterase siRNA. Taken together, our results show that IGFBP-3 or its peptide blocks hyaluronan-CD44 signaling via a mechanism that depends on both p53 and acetylcholinesterase.


Assuntos
Acetilcolinesterase/metabolismo , Apoptose/genética , Meios de Cultura/metabolismo , Receptores de Hialuronatos/metabolismo , Proteína 3 de Ligação a Fator de Crescimento Semelhante à Insulina/farmacologia , Proteína 3 de Ligação a Fator de Crescimento Semelhante à Insulina/fisiologia , Transdução de Sinais/genética , Proteína Supressora de Tumor p53/metabolismo , Células A549 , Apoptose/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Humanos , Ácido Hialurônico/metabolismo , Transdução de Sinais/efeitos dos fármacos
15.
Biochemistry ; 57(39): 5726-5737, 2018 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-30184438

RESUMO

Insulin-like growth factor-binding protein-3 (IGFBP-3) belongs to a family of IGF-binding proteins. Humanin is a peptide known to bind residues 215-232 of mature IGFBP-3 in the C-terminal region of the protein. This region of IGFBP-3 was shown earlier to bind certain glycosaminoglycans including hyaluronan (HA). Here, we characterized the binding affinities of the IGFBP-3 protein and peptide (215-KKGFYKKKQCRPSKGRKR-232) to HA and to humanin and found that HA binds with a weaker affinity to this region than does humanin. Either HA or humanin could bind to this IGFBP-3 segment, but not simultaneously. The HA receptor, CD44, blocked HA binding to IGFBP-3 but had no effect on binding of humanin to either IGFBP-3 or its peptide. Upon incubation of HA with CD44 and either IGFBP-3 protein or peptide, humanin was effective at binding and sequestering IGFBP-3 or peptide, thereby enabling access of CD44 to HA. We show that IGFBP-3 and humanin in the medium of A549 lung cancer cells can immunoprecipitate in a complex. However, the fraction of IGFBP-3 in the medium that is able to bind HA was not complexed with humanin suggesting that HA binding to the 215-232 segment renders it inaccessible for binding to humanin. Moreover, while the cytotoxic effects of IGFBP-3 on cell viability were reversed by humanin, blocking HA-CD44 interaction with an anti-CD44 antibody in combination with IGFBP-3 did not have an additive negative effect on cell viability suggesting that IGFBP-3 exerts its cytotoxic effects on cell survival through a mechanism that depends on HA-CD44 interactions.


Assuntos
Receptores de Hialuronatos/metabolismo , Ácido Hialurônico/metabolismo , Proteína 3 de Ligação a Fator de Crescimento Semelhante à Insulina/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Células A549 , Sequência de Aminoácidos , Sobrevivência Celular/fisiologia , Humanos , Fragmentos de Peptídeos/metabolismo , Ligação Proteica
16.
Protein Pept Lett ; 24(7): 590-598, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28641565

RESUMO

INTRODUCTION: The importance of the antitumor activity of some antimicrobial peptides (AMPs) is being increasingly recognized. The antimicrobial peptide, tachyplesin, has been shown to exhibit anticancer properties and a linear, cysteine deleted analogue (CDT), was found to retain its antibacterial function. OBJECTIVES: The objective was to test CDT and related analogues against normal mammalian, bacterial, and cancer cells to determine their effectiveness and then utilize specific assays to determine a possible mechanism of action. METHODS: We used sequence reversal and D-amino acids to synthesize four CDT analogues by solid phase peptide synthesis. A number of assays were used including liposome dye-leakage, antibacterial activity against both Gram-positive and Gram-negative bacterial strains, hemolytic assays, methyl thiazolyl tetrazolium (MTT), and apoptosis to examine their effectiveness as both AMPs and anti-cancer peptides (ACPs). We then tested the analogues for their ability to inhibit proliferation of the human lung cancer cell line, A549. RESULTS: We found that D-CDT exhibited the best bactericidal properties of those tested and was not damaging to red blood cells. Both D-CDT and reverse D-CDT showed a dose-dependent reduction of cell viability. However, D-CDT was most effective with an IC50 of 9.814 µM, a value 9-fold lower than that calculated for reverse D-CDT (90.16 µM). Apoptosis does not appear to be a mechanism by which D-CDT exerts its anticancer properties since > 100 µM was required to increase activation of caspase 3. Moreover, the ERK1/2 pathway is also unlikely since only a modest (20%) decrease of activity was observed with > 100 µM D-CDT. However, D-CDT was found to operate via a hyaluronan (HA)-dependent mechanism as pretreatment of the cells with hyaluronidase decreased the cytotoxic effects of D-CDT on A549 cells and increased its IC50 29-fold to 283.9 µM. CONCLUSION: D-CDT is both an effective AMP and ACP, and likely exerts its anticancer effects through both membranolytic as well as an HA-mediated mechanism.


Assuntos
Adenocarcinoma/tratamento farmacológico , Peptídeos Catiônicos Antimicrobianos/administração & dosagem , Proliferação de Células/efeitos dos fármacos , Proteínas de Ligação a DNA/administração & dosagem , Neoplasias Pulmonares/tratamento farmacológico , Peptídeos Cíclicos/administração & dosagem , Células A549 , Adenocarcinoma/patologia , Adenocarcinoma de Pulmão , Sequência de Aminoácidos , Aminoácidos/administração & dosagem , Aminoácidos/química , Peptídeos Catiônicos Antimicrobianos/química , Apoptose/efeitos dos fármacos , Cisteína/química , Ensaios de Seleção de Medicamentos Antitumorais , Bactérias Gram-Negativas/efeitos dos fármacos , Humanos , Neoplasias Pulmonares/patologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos
17.
Anal Chim Acta ; 853: 676-681, 2015 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-25467517

RESUMO

An immunoassay based on CE-LIF was developed for the simultaneous detection of cyclobutane pyrimidine dimers (CPDs) and pyrimidine 6-4 pyrimidone photoproducts (6-4PPs) in genomic DNA irradiated with UVB or natural sunlight. Human cells were first exposed to varying amounts of UVB or natural sunlight to induce DNA damage. Genomic DNA was extracted and incubated with anti-CPD and anti-6-4PP primary antibodies attached to secondary antibodies with a fluorescent quantum dot (QD) reporter that emitted either red or yellow fluorescence. CE was used to separate the unbound antibodies from those bound to the photoproducts, and LIF with appropriate optical filters was used to separate the fluorescence signals from each QD to individual photomultiplier tubes for simultaneous photoproduct detection. Using this strategy, photoproducts were detected from ∼6 ng (200 ng µL(-1)) of DNA under a low UVB fluence of 65 J m(-2) for CPDs or 195 J m(-2) for 6-4PPs. This assay was also the first to demonstrate the detection of CPDs in human cells after only 15 min of irradiation under natural sunlight.


Assuntos
Dano ao DNA/efeitos da radiação , Imunofluorescência , Dímeros de Pirimidina/análise , Raios Ultravioleta , Linhagem Celular Tumoral , Eletroforese Capilar , Humanos , Dímeros de Pirimidina/isolamento & purificação , Pontos Quânticos/química
18.
J Pharm Pharm Sci ; 10(2): 246-55, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17706183

RESUMO

PURPOSE: Cyclodextrins (CDs) have been identified as a viable alternative to viral vectors for use in therapeutic applications. Here, the stability of the complex formed between the a multiply charged, cationic, fully substituted heptakis-(6-amino-2-galactosyl)cyclodextrin (BCDX12) with a multiply charged 12-mer hexachlorofluorescein tagged arabinopolynucleotide (Hex-PAH) have been evaluated. METHODS: The stability of complexes of Hex-PAH and BCD-X12 was studied with respect to mole ratio (1:1, 1:2, and 1:5 Hex-PAH:BCD-X12), pH, buffer concentration, temperature, and agitation using capillary electrophoresis with laser induced fluorescence detection (CE/LIF). Two neutral CDs and an additional cationic CD were also tested under the same analytical conditions to determine their ability to form complexes. RESULTS: Hex-PAH:BCDX12 complexes at mole ratios of 1:2 were stable in 10 mM (160 mM total borate concentration) sodium tetraborate buffer at pH 7.5 and at temperatures of 4 degrees C and 25 degrees C over 48 hours. However, the Hex-PAH:BCD-X12 complex was less stable at 37 degrees C and at higher buffer concentrations and pH values. Strong vortex mixing prior to analysis was found to disrupt the complex. Of the four CDs tested for their ability to complex with Hex-PAH, only BCDX12 formed stable complexes with Hex-PAH under the test conditions. CONCLUSIONS: Capillary electrophoresis was found to be well suited to test the stability of cyclodextrin-nucleotide complexes. CE/LIF indicated that only a single Hex- PAH:BCD-X12 complex was formed at all formulation ratios, and that the complexes were electrophoretically identical to each other, and increasing the molar ratio beyond 1:2 did not contribute measurably to complex stability. Storage temperature and agitation conditions were found to influence complex stability. Since no stable complexes were formed with neutral cyclodextrins, the results support the hypothesis of a 'charge associated' complex rather than an inclusion complex, although inclusion complexes cannot be excluded on the basis of these studies.


Assuntos
Arabinonucleotídeos/química , Oligonucleotídeos/química , beta-Ciclodextrinas/química , Boratos/química , Eletroforese Capilar , Fluoresceínas/química , Fluorescência , Concentração de Íons de Hidrogênio , Lasers , Temperatura
19.
Methods ; 38(4): 324-30, 2006 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-16495077

RESUMO

Aptamers are short nucleic acid sequences that are used as ligands to bind their targets with high affinity. They are generated via the combinatorial chemistry procedure systematic evolution of ligands by exponential enrichment (SELEX). Aptamers have shown much promise towards detection of a variety of protein targets, including cytokines. Specifically, for the determination of cytokines and growth factors, several assays making use of aptamers have been developed, including aptamer-based enzyme-linked immunosorbent assays, antibody-linked oligonucleotide assay, fluorescence (anisotropy and resonance energy transfer) assays, and proximity ligation assays. In this article, the concept of aptamer selection using SELEX and the assay formats using aptamers for the detection of cytokines are discussed.


Assuntos
Aptâmeros de Nucleotídeos/química , Bioquímica/métodos , Citocinas/análise , Animais , Sequência de Bases , Bioensaio/métodos , Técnicas de Química Combinatória , Citocinas/metabolismo , DNA , Eletroforese em Gel de Poliacrilamida , Ensaio de Imunoadsorção Enzimática , Polarização de Fluorescência , Transferência Ressonante de Energia de Fluorescência/métodos , Humanos , Concentração de Íons de Hidrogênio , Ligantes , Dados de Sequência Molecular , Oligonucleotídeos/química , Proteínas/química , Fatores de Tempo
20.
Electrophoresis ; 27(2): 433-41, 2006 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-16331583

RESUMO

Binding stoichiometries between four DNA aptamers (RT12, RT26, RTlt49, and ODN93) and the reverse transcriptase (RT) of the type 1 human immunodeficiency virus (HIV-1) were studied using affinity CE (ACE) coupled with LIF polarization and fluorescence polarization (FP). The ACE/LIF study showed evidence of two binding stoichiometries between the HIV-1 RT protein and aptamers RT12, RT26, and ODN93, suggesting that these aptamers can bind to both the p66 and p51 subunits of the HIV-1 RT. Only one binding stoichiometry for aptamer RTlt49 was found. The affinity complexes were easily separated from the unbound aptamers; however, the different stoichiometries were not well resolved. A complementary technique, FP, was able to provide additional information about the binding and supporting evidence for the ACE/LIF results. The ACE/LIFP study also revealed that the FP values of the 1:1 complexes of the HIV-1 RT protein with aptamers RT12, RT26, and ODN93 were always much greater than those of the 1:2 complexes. This was initially surprising because the larger molecular size of the 1:2 complexes was expected to result in higher FP values than the corresponding 1:1 complexes. This phenomenon was probably a result of fluorescence resonance energy transfer between the two fluorescent molecules bound to the HIV-1 RT protein.


Assuntos
Aptâmeros de Nucleotídeos/química , Transcriptase Reversa do HIV/química , Eletroforese Capilar , Polarização de Fluorescência , Corantes Fluorescentes/química , Humanos , Lasers , Ligação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...