Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Beilstein J Org Chem ; 19: 1881-1894, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38116243

RESUMO

Anion-π catalysis, introduced in 2013, stands for the stabilization of anionic transition states on π-acidic aromatic surfaces. Anion-π catalysis on carbon allotropes is particularly attractive because high polarizability promises access to really strong anion-π interactions. With these expectations, anion-π catalysis on fullerenes has been introduced in 2017, followed by carbon nanotubes in 2019. Consistent with expectations from theory, anion-π catalysis on carbon allotropes generally increases with polarizability. Realized examples reach from enolate addition chemistry to asymmetric Diels-Alder reactions and autocatalytic ether cyclizations. Currently, anion-π catalysis on carbon allotropes gains momentum because the combination with electric-field-assisted catalysis promises transformative impact on organic synthesis.

2.
Sci Adv ; 9(41): eadj5502, 2023 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-37824606

RESUMO

The vision to control the charges migrating during reactions with external electric fields is attractive because of the promise of general catalysis, emergent properties, and programmable devices. Here, we explore this idea with anion-π catalysis, that is the stabilization of anionic transition states on aromatic surfaces. Catalyst activation by polarization of the aromatic system is most effective. This polarization is induced by electric fields. The use of electrochemical microfluidic reactors to polarize multiwalled carbon nanotubes as anion-π catalysts emerges as essential. These reactors provide access to high fields at low enough voltage to prevent electron transfer, afford meaningful effective catalyst/substrate ratios, and avoid interference from additional electrolytes. Under these conditions, the rate of pyrene-interfaced epoxide-opening ether cyclizations is linearly voltage-dependent at positive voltages and negligible at negative voltages. While electromicrofluidics have been conceived for redox chemistry, our results indicate that their use for supramolecular organocatalysis has the potential to noncovalently electrify organic synthesis in the broadest sense.

3.
JACS Au ; 3(4): 1039-1051, 2023 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-37124310

RESUMO

The autocatalysis of epoxide-opening ether cyclizations on the aromatic surface of anion-π catalysts stands out as a leading example of emergent properties expected from the integration of unorthodox interactions into catalysis. A working hypothesis was proposed early on, but the mechanism of anion-π autocatalysis has never been elucidated. Here, we show that anion-π autocatalysis is almost independent of peripheral crowding in substrate and product. Inaccessible asymmetric anion-π autocatalysis and sometimes erratic reproducibility further support that the origin of anion-π autocatalysis is more complex than originally assumed. The apparent long-distance communication without physical contact calls for the inclusion of water between substrate and product on the catalytic aromatic surface. Efficient anion-π autocatalysis around equimolar amounts but poor activity in dry solvents and with excess water indicate that this inclusion of water requires high precision. Computational models suggest that two water molecules transmit dual substrate activation by the product and serve as proton shuttles along antiparallel but decoupled hydrogen-bonded chains to delocalize and stabilize evolving charge density in the transition state by "anion-π double bonds". This new transition-state model of anion-π autocatalysis provides a plausible mechanism that explains experimental results and brings anion-π catalysis to an unprecedented level of sophistication.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...