Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Ecol Evol ; 11(23): 16462-16472, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34938449

RESUMO

In the Brazilian Atlantic Rainforest (AF), amphibians (625 species) face habitat degradation leading to stressful thermal conditions that constrain animal activity (e.g., foraging and reproduction). Data on thermal ecology for these species are still scarce. We tested the hypothesis that environmental occupation affects the thermal tolerance of amphibian species more than their phylogenetic relationships. We evaluated patterns of thermal tolerance of 47 amphibian species by assessing critical thermal maxima and warming tolerances, relating these variables with ecological covariates (e.g., adult macro- and microhabitat and site of larval development). We used mean and maximum environmental temperature, ecological covariates, and morphological measurements in the phylogenetic generalized least squares model selection to evaluate which traits better predict thermal tolerance. We did not recover phylogenetic signal under a Brownian model; our results point to a strong association between critical thermal maxima and habitat and development site. Forest species were less tolerant to warm temperatures than open area or generalist species. Species with larvae that develop in lentic environment were more tolerant than those in lotic ones. Thus, species inhabiting forest microclimates are more vulnerable to the synergistic effect of habitat loss and climate change. We use radar charts as a quick evaluation tool for thermal risk diagnoses using aspects of natural history as axes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA