Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Thyroid ; 29(12): 1755-1764, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31456501

RESUMO

Background: Thyroid hormone status in hypothyroidism (HT) downregulates key elements in Ca2+ handling within the heart, reducing contractility, impairing the basal energetic balance, and increasing the risk of cardiovascular disease. Mitochondrial Ca2+ transport is reduced in HT, and tolerance to reperfusion damage has been documented, but the precise mechanism is not well understood. Therefore, we aimed to determine the stoichiometry and activity of the mitochondrial Ca2+ uniporter or uniplex in an HT model and the relevance to the opening of the mitochondrial permeability transition pores (mPTP) during ischemia/reperfusion (I/R) injury. Methods: An HT model was established in Wistar rats by treatment with 6-propylthiouracil for 28 days. Uniplex composition and activity were determined in cardiac mitochondria. Hearts were perfused ex vivo to induce I/R injury, and functional parameters related to contractility and tissue viability were evaluated. Results: The cardiac stoichiometry between two subunits of the uniplex (MICU1/MCU) increased by 25% in animals with HT. The intramitochondrial Ca2+ content was reduced by 40% and was less prone to the mPTP opening. After I/R injury, ischemic contracture and the onset of ventricular fibrillation were delayed in animals with HT, concomitant with a reduction in oxidative damage and mitochondrial dysfunction. Conclusions: Our results suggest that HT is associated with an increase in the cardiac MICU1/MCU ratio, thereby changing the stoichiometry between these subunits to increase the threshold to cytosolic Ca2+ and reduce mitochondrial Ca2+ overload. Our results also demonstrate that this HT model can be used to explore the role of mitochondrial Ca2+ transport in cardiac diseases due to its induced tolerance to cardiac damage.


Assuntos
Cálcio/metabolismo , Hipotireoidismo/metabolismo , Hipotireoidismo/fisiopatologia , Mitocôndrias Cardíacas/metabolismo , Traumatismo por Reperfusão Miocárdica/fisiopatologia , Animais , Antitireóideos , Citosol/metabolismo , Hipotireoidismo/induzido quimicamente , Masculino , Proteínas de Transporte da Membrana Mitocondrial , Poro de Transição de Permeabilidade Mitocondrial , Estresse Oxidativo , Propiltiouracila , Ratos , Ratos Wistar , Fibrilação Ventricular/etiologia , Fibrilação Ventricular/fisiopatologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...