Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(24)2023 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-38139395

RESUMO

During the antiretroviral era, individuals living with HIV continue to experience milder forms of HIV-associated neurocognitive disorder (HAND). Viral proteins, including Tat, play a pivotal role in the observed alterations within the central nervous system (CNS), with mitochondrial dysfunction emerging as a prominent hallmark. As a result, our objective was to examine the expression of genes associated with mitophagy and mitochondrial biogenesis in the brain exposed to the HIV-1 Tat protein. We achieved this by performing bilateral stereotaxic injections of 100 ng of HIV-1 Tat into the hippocampus of Sprague-Dawley rats, followed by immunoneuromagnetic cell isolation. Subsequently, we assessed the gene expression of Ppargc1a, Pink1, and Sirt1-3 in neurons using RT-qPCR. Additionally, to understand the role of Tert in telomeric dysfunction, we quantified the activity and expression of Tert. Our results revealed that only Ppargc1a, Pink1, and mitochondrial Sirt3 were downregulated in response to the presence of HIV-1 Tat in hippocampal neurons. Interestingly, we observed a reduction in the activity of Tert in the experimental group, while mRNA levels remained relatively stable. These findings support the compelling evidence of dysregulation in both mitophagy and mitochondrial biogenesis in neurons exposed to HIV-1 Tat, which in turn induces telomeric dysfunction.


Assuntos
Infecções por HIV , HIV-1 , Transtornos Neurocognitivos , Sirtuína 3 , Produtos do Gene tat do Vírus da Imunodeficiência Humana , Animais , Ratos , Produtos do Gene tat/metabolismo , Infecções por HIV/metabolismo , HIV-1/metabolismo , Transtornos Neurocognitivos/metabolismo , Transtornos Neurocognitivos/virologia , Neurônios/metabolismo , Biogênese de Organelas , Proteínas Quinases/metabolismo , Ratos Sprague-Dawley , Sirtuína 3/genética , Sirtuína 3/metabolismo , Produtos do Gene tat do Vírus da Imunodeficiência Humana/genética , Produtos do Gene tat do Vírus da Imunodeficiência Humana/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo
2.
Int J Mol Sci ; 23(2)2022 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-35054829

RESUMO

HIV-Associated neurocognitive disorder (HAND) is one of the major concerns since it persists in 40% of this population. Nowadays, HAND neuropathogenesis is considered to be caused by the infected cells that cross the brain-blood barrier and produce viral proteins that can be secreted and internalized into neurons leading to disruption of cellular processes. The evidence points to viral proteins such as Tat as the causal agent for neuronal alteration and thus HAND. The hallmarks in Tat-induced neurodegeneration are endoplasmic reticulum stress and mitochondrial dysfunction. Sirtuins (SIRTs) are NAD+-dependent deacetylases involved in mitochondria biogenesis, unfolded protein response, and intrinsic apoptosis pathway. Tat interaction with these deacetylases causes inhibition of SIRT1 and SIRT3. Studies revealed that SIRTs activation promotes neuroprotection in neurodegenerative diseases such Alzheimer's and Parkinson's disease. Therefore, this review focuses on Tat-induced neurotoxicity mechanisms that involve SIRTs as key regulators and their modulation as a therapeutic strategy for tackling HAND and thereby improving the quality of life of people living with HIV.


Assuntos
Infecções por HIV/psicologia , Doenças Neurodegenerativas/metabolismo , Sirtuínas/metabolismo , Estresse do Retículo Endoplasmático , Regulação da Expressão Gênica , Infecções por HIV/metabolismo , Humanos , Qualidade de Vida , Resposta a Proteínas não Dobradas
3.
Animals (Basel) ; 11(11)2021 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-34827910

RESUMO

Micronuclei (MN) are used to assess genotoxic exposure, whereas nuclear buds (NBs) have been linked to genotoxic events. Crocodylus moreletii was studied to identify MN and NBs. Three groups were formed: Group 1 (water) and groups 2 and 3 (7 or 10 mg/kg of cyclophosphamide). A drop of blood was obtained daily from the claw tip at 0 to 120 h. Spontaneous micronucleated erythrocytes (MNEs) and erythrocytes with nuclear buds (NBEs) were counted. The frequencies of micronucleated young erythrocytes (MNYEs) and NB young erythrocytes (NBYEs) were evaluated, including the ratio of young erythrocytes (YE)/1000 total erythrocytes. No significant differences were observed in the YE proportion on sampling days; group 1 did not show differences for any parameter, whereas group 2 showed significant differences in MNEs and NBEs, and group 3 showed differences in NBEs and NBYEs. Some mitotic activity in circulation was observed in YEs. In conclusion, NBEs could be a more sensitive biomarker to genotoxic damage than MNEs. The identification of these biomarkers leads us to propose Crocodylus moreletii as a possible environment bioindicator because these parameters could be useful to analyze the in vivo health status of these reptiles and for biomonitoring genotoxic pollutants in their habitats.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA