Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Omega ; 5(30): 18849-18861, 2020 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-32775887

RESUMO

Controlling graphene conductivity is crucial for its potential applications. With this focus, this paper shows the effect of the non-covalent bonding of a pyrimidine derivative (HIS) on the electronic properties of graphene (G). Several G-HIS hybrids are prepared through mild treatments keeping unaltered the structures of both G and HIS. The attachment of HIS to G occurs by π-π stacking of the HIS-aromatic residue with the G surface. This partially blocks the p z electrons of G, giving rise to the splitting of both the valence and conduction bands. Moreover, the width of the splitting is directly related to the HIS content. This fact allows the fine-tuning of the band gap of G-HIS hybrids. Furthermore, HIS keeps its metal-complexing ability in the G-HIS hybrids. Taking advantage of this, a G-HIS-Cu(0) composite was prepared by H2 plasma reduction of a precursor of the G-HIS-Cu(II) type. G-HIS-Cu(0) contains Cu(0) clusters stabilized on the G surface due to interactions with the COO- functions of HIS. In an analogous hybrid, G-HIS-Au(0), the Au(0) NPs are also stabilized by COO- functions. This material, consisting of the coupling of Au(0) NPs and G-HIS, photocatalyzed water reduction under visible light radiation producing 12.5 µmol·g-1·h-1of hydrogen.

2.
Molecules ; 24(15)2019 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-31357384

RESUMO

A new G-(H2L)-Pd heterogeneous catalyst has been prepared via a self-assembly process consisting in the spontaneous adsorption, in water at room temperature, of a macrocyclic H2L ligand on graphene (G) (G + H2L = G-(H2L)), followed by decoration of the macrocycle with Pd2+ ions (G-(H2L) + Pd2+ = G-(H2L)-Pd) under the same mild conditions. This supramolecular approach is a sustainable (green) procedure that preserves the special characteristics of graphene and furnishes an efficient catalyst for the Cu-free Sonogashira cross coupling reaction between iodobenzene and phenylacetylene. Indeed, G-(H2L)-Pd shows an excellent conversion (90%) of reactants into diphenylacetylene under mild conditions (50 °C, water, aerobic atmosphere, 14 h). The catalyst proved to be reusable for at least four cycles, although decreasing yields down to 50% were observed.


Assuntos
Complexos de Coordenação/química , Grafite/química , Paládio/química , Catálise , Fenômenos Químicos , Concentração de Íons de Hidrogênio , Ligantes , Modelos Moleculares , Conformação Molecular , Estrutura Molecular , Soluções , Análise Espectral
3.
ACS Omega ; 2(7): 3868-3877, 2017 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-31457693

RESUMO

The binding properties of HL1, HL2, and HL3 ligands toward Cu(II) and Zn(II) ions, constituted by tetraaza-macrocyclic rings decorated with pyrimidine pendants, were investigated by means of potentiometric and UV spectrophotometric measurements in aqueous solution, with the objective of using the related HL-M(II) (HL = HL1-HL3; M = Cu, Zn) complexes for the preparation of hybrid MWCNT-HL-M(II) materials based on multiwalled carbon nanotubes (MWCNTs), through an environmentally friendly noncovalent procedure. As shown by the crystal structure of [Cu(HL1)](ClO4)2, metal coordination takes place in the macrocyclic ring, whereas the pyrimidine residue remains available for attachment onto the surface of the MWCNTs via π-π stacking interactions. On the basis of equilibrium data showing the formation of highly stable Cu(II) complexes, the MWCNT-HL1-Cu(II) material was prepared and characterized. This compound proved very stable toward lixiviation processes (release of HL1 and/or Cu(II)); thus, it was used for the preparation of its reduced MWCNT-HL1-Cu(0) derivatives. X-ray photoelectron spectroscopy and transmission electron microscopy images showed that MWCNT-HL1-Cu(0) contains Cu(0) nanoparticles, of very small (less than 5 nm) and regular size, uniformly distributed over the surface of the MWCNTs. Also, the MWCNT-HL1-Cu(0) material proved very resistant to detachment of its components. Accordingly, both MWCNT-HL1-Cu(II) and MWCNT-HL1-Cu(0) are promising candidates for applications in heterogeneous catalysis.

4.
J Am Chem Soc ; 135(1): 102-5, 2013 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-23259839

RESUMO

Thermodynamic parameters (ΔG°, ΔH°, TΔS°), obtained by means of potentiometric and isothermal titration calorimetry (ITC) methods, for the binding equilibria involving anions of high negative charge, like SO(4)(2-), SeO(4)(2-), S(2)O(3)(2-) and Co(CN)(6)(3-), and nitroso-amino-pyrimidine receptors in water suggested that anion-π interactions furnish a stabilization of about -10 kJ/mol to the free energy of association. These anion-π interactions are almost athermic and favored by large entropic contributions which are likely due to the reduced hydrophobic pyrimidine surface exposed to water after anion aggregation, and the consequent reduced disruptive effect on the dynamic water structure. The crystal structure of the {H(4)L[Co(CN)(6)]}·2H(2)O complex showed strong anion-π interactions between Co(CN)(6)(3-) and the protonated H(4)L(3+) receptor. The CN···centroid distance (2.786(3) Å), occurring with a cyanide N atom located almost above the centroid of the pyrimidine ring, is the shortest distance till now reported for the interaction between CN(-) ions and heteroaromatic rings.


Assuntos
Termodinâmica , Ânions/química , Calorimetria , Soluções , Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...