Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cureus ; 16(3): e55982, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38476505

RESUMO

Video head impulse test (vHIT) artifacts are defined as spurious elements or disturbances in the recorded data that deviate from the true vestibulo-ocular reflex response. These artifacts can arise from various sources, encompassing technological limitations, patient-specific factors, or environmental influences, introducing inaccuracies in vHIT outcomes. The absence of standardized criteria for artifact identification leads to methodological heterogeneity. This narrative review aims to comprehensively examine the challenges posed by artifacts in the vHIT. By surveying existing literature, the review seeks to elucidate the multifaceted nature of artifacts arising from technological, patient-related, evaluator-related, and environmental factors.

2.
bioRxiv ; 2023 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-38168262

RESUMO

The nucleus ambiguus (nAmb) provides parasympathetic control of cardiorespiratory functions as well as motor control of the upper airways and striated esophagus. A subset of nAmb neurons innervates the heart through the vagus nerve to control cardiac function at rest and during key autonomic reflexes such as the mammalian diving reflex. These cardiovagal nAmb neurons may be molecularly and anatomically distinct, but how they differ from other nAmb neurons in the adult brain remains unclear. We therefore classified adult mouse nAmb neurons based on their genome-wide expression profiles, innervation of cardiac ganglia, and ability to control HR. Our integrated analysis of single-nucleus RNA-sequencing data predicted multiple molecular subtypes of nAmb neurons. Mapping the axon projections of one nAmb neuron subtype, Npy2r-expressing nAmb neurons, showed that they innervate cardiac ganglia. Optogenetically stimulating all nAmb vagal efferent neurons dramatically slowed HR to a similar extent as selectively stimulating Npy2r+ nAmb neurons, but not other subtypes of nAmb neurons. Finally, we trained mice to perform voluntary underwater diving, which we use to show Npy2r+ nAmb neurons are activated by the diving response, consistent with a cardiovagal function for this nAmb subtype. These results together reveal the molecular organization of nAmb neurons and its control of heart rate.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...