Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biotechnol Rep (Amst) ; 11: 12-17, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28352535

RESUMO

A strategy for the detection of aflatoxin B1 using a capacitive biosensor has been studied. The use of proteins for the generation of sites with high specificity against aflatoxin B1 are produced via bioimprinting. This technique has become a tool for the detection of aflatoxin B1 using a capacitive biosensor. The results demonstrate the ability to generate specific interactions with aflatoxin B1 with a linear relation between signals registered and log concentration of the target aflatoxin in the concentration range of 3.2 × 10-6 to 3.2 × 10-9 M when using ovalbumin as framework for the bioimprinting.

2.
Biotechnol Rep (Amst) ; 8: 144-151, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28352584

RESUMO

A capacitive biosensor was used for detection of aflatoxin B1. Two different methods for cleaning gold electrodes were evaluated using cyclic voltammetry in the presence of ferricyanide as redox couple. The methods involve use of a sequence of cleaning steps avoiding the use of Piranha solution and plasma cleaner. Anti-aflatoxin B1 was immobilized on self-assembled monolayers (SAM). The immune-capacitive biosensor is able to detect aflatoxin B1 concentrations in a linear range of 3.2 × 10-12 M to 3.2 × 10-9 M when thiourea was used to form the SAM; 3.2 × 10-9 M to 3.2 × 10-7 M when thioctic acid was used. When the gold surface was isolated with tyramine-electropolymerization linear ranges of 3.2 × 10-13 M to 3.2 × 10-7 M and 3.2 × 10-9 M to 3.2 × 10-7 M where obtained, respectively. The results obtained show the difference in linear range, limit of detection, and limit of quantification when different self-assembled monolayers are used for aflatoxin B1 detection.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...