Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biol Chem ; 276(12): 9297-302, 2001 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-11121418

RESUMO

Regulation of the expression of the cytosolic O-acetylserine(thiol)lyase gene (Atcys-3A) from Arabidopsis thaliana under heavy metal stress conditions has been investigated. Northern blot analysis of Atcys-3A expression shows a 7-fold induction after 18 h of cadmium treatment. Addition of 50 microm CdCl(2) to the irrigation medium of mature Arabidopsis plants induces a rapid accumulation of the mRNA throughout the leaf lamina, the root and stem cortex, and stem vascular tissues when compared with untreated plants, as observed by in situ hybridization. High pressure liquid chromatography analysis of GSH content shows a transient increase after 18 h of metal treatment. Our results are compatible with a high cysteine biosynthesis rate under heavy metal stress required for the synthesis of GSH and phytochelatins, which are involved in the plant detoxification mechanism. Arabidopsis-transformed plants overexpressing the Atcys-3A gene by up to 9-fold show increased tolerance to cadmium when grown in medium containing 250 microm CdCl(2), suggesting that increased cysteine availability is responsible for cadmium tolerance. In agreement with these results, exogenous addition of cystine can, to some extent, also favor the growth of wild-type plants in cadmium-containing medium. Cadmium accumulates to higher levels in leaves of tolerant transformed lines than in wild-type plants.


Assuntos
Adaptação Fisiológica/genética , Arabidopsis/genética , Cádmio/farmacologia , Carbono-Oxigênio Liases/genética , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Metais Pesados/farmacologia , Complexos Multienzimáticos , Proteínas de Saccharomyces cerevisiae , Arabidopsis/enzimologia , Arabidopsis/fisiologia , Carbono-Oxigênio Liases/metabolismo , Cisteína/metabolismo , Cisteína Sintase , DNA Complementar , Glutationa/metabolismo , Folhas de Planta/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
2.
Proc Natl Acad Sci U S A ; 97(20): 11108-13, 2000 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-10995473

RESUMO

In Arabidopsis thaliana, trichome cells are specialized unicellular structures with uncertain functions. Based on earlier observations that one of the genes involved in cysteine biosynthesis (Atcys-3A) is highly expressed in trichomes, we have extended our studies in trichome cells to determine their capacity for glutathione (GSH) biosynthesis. First, we have analyzed by in situ hybridization the tissue-specific expression of the genes Atcys-3A and sat5, which encode O-acetylserine(thio)lyase (OASTL) and serine acetyltransferase (SAT), respectively, as well as gsh1 and gsh2, which encode gamma-glutamylcysteine synthetase and glutathione synthetase, respectively. The four genes are highly expressed in leaf trichomes of Arabidopsis, and their mRNA accumulate to high levels. Second, we have directly measured cytoplasmic GSH concentration in intact cells by laser-scanning microscopy after labeling with monochlorobimane as a GSH-specific probe. From these measurements, cytosolic GSH concentrations of 238+/-25, 80+/-2, and 144+/-19 microM were estimated for trichome, basement, and epidermal cells, respectively. Taking into account the volume of the cells measured using stereological techniques, the trichomes have a total GSH content more than 300-fold higher than the basement and epidermal cells. Third, after NaCl treatment, GSH biosynthesis is markedly decreased in trichomes. Atcys-3A, sat5, gsh1, and gsh2 mRNA levels show a decrease in transcript abundance, and [GSH](cyt) is reduced to 47+/-5 microM. These results suggest the important physiological significance of trichome cells related to GSH biosynthesis and their possible role as a sink during detoxification processes.


Assuntos
Arabidopsis/metabolismo , Glutationa/biossíntese , Arabidopsis/genética , Células Cultivadas , Regulação da Expressão Gênica de Plantas , Glutationa/genética , Sais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...