Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Econ Interact Coord ; 16(3): 629-647, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33680208

RESUMO

How does social distancing affect the reach of an epidemic in social networks? We present Monte Carlo simulation results of a susceptible-infected-removed with social distancing model. The key feature of the model is that individuals are limited in the number of acquaintances that they can interact with, thereby constraining disease transmission to an infectious subnetwork of the original social network. While increased social distancing typically reduces the spread of an infectious disease, the magnitude varies greatly depending on the topology of the network, indicating the need for policies that are network dependent. Our results also reveal the importance of coordinating policies at the 'global' level. In particular, the public health benefits from social distancing to a group (e.g. a country) may be completely undone if that group maintains connections with outside groups that are not following suit.

2.
Evol Comput ; 19(3): 345-71, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-20868263

RESUMO

Memetic algorithms are known to be a powerful technique in solving hard optimization problems. To design a memetic algorithm, one needs to make a host of decisions. Selecting the population size is one of the most important among them. Most of the algorithms in the literature fix the population size to a certain constant value. This reduces the algorithm's quality since the optimal population size varies for different instances, local search procedures, and runtimes. In this paper we propose an adjustable population size. It is calculated as a function of the runtime of the whole algorithm and the average runtime of the local search for the given instance. Note that in many applications the runtime of a heuristic should be limited and, therefore, we use this bound as a parameter of the algorithm. The average runtime of the local search procedure is measured during the algorithm's run. Some coefficients which are independent of the instance and the local search are to be tuned at the design time; we provide a procedure to find these coefficients. The proposed approach was used to develop a memetic algorithm for the multidimensional assignment problem (MAP). We show that our adjustable population size makes the algorithm flexible to perform efficiently for a wide range of running times and local searches and this does not require any additional tuning of the algorithm.


Assuntos
Algoritmos , Modelos Teóricos , Ferramenta de Busca/métodos , Simulação por Computador
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...