Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Neurosci ; 15: 661261, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34276286

RESUMO

Memristive devices are novel electronic devices, which resistance can be tuned by an external voltage in a non-volatile way. Due to their analog resistive switching behavior, they are considered to emulate the behavior of synapses in neuronal networks. In this work, we investigate memristive devices based on the field-driven redox process between the p-conducting Pr0.7Ca0.3MnO3 (PCMO) and different tunnel barriers, namely, Al2O3, Ta2O5, and WO3. In contrast to the more common filamentary-type switching devices, the resistance range of these area-dependent switching devices can be adapted to the requirements of the surrounding circuit. We investigate the impact of the tunnel barrier layer on the switching performance including area scaling of the current and variability. Best performance with respect to the resistance window and the variability is observed for PCMO with a native Al2O3 tunnel oxide. For all different layer stacks, we demonstrate a spike timing dependent plasticity like behavior of the investigated PCMO cells. Furthermore, we can also tune the resistance in an analog fashion by repeated switching the device with voltage pulses of the same amplitude and polarity. Both measurements resemble the plasticity of biological synapses. We investigate in detail the impact of different pulse heights and pulse lengths on the shape of the stepwise SET and RESET curves. We use these measurements as input for the simulation of training and inference in a multilayer perceptron for pattern recognition, to show the use of PCMO-based ReRAM devices as weights in artificial neural networks which are trained by gradient descent methods. Based on this, we identify certain trends for the impact of the applied voltages and pulse length on the resulting shape of the measured curves and on the learning rate and accuracy of the multilayer perceptron.

2.
J Biogeogr ; 41(4): 724-735, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25505356

RESUMO

AIM: Climate change can lead to decreased climatic suitability within species' distributions, increased fragmentation of climatically suitable space, and/or emergence of newly suitable areas outside present distributions. Each of these extrinsic threats and opportunities potentially interacts with specific intrinsic traits of species, yet this specificity is seldom considered in risk assessments. We present an analytical framework for examining projections of climate change-induced threats and opportunities with reference to traits that are likely to mediate species' responses, and illustrate the applicability of the framework. LOCATION: Sub-Saharan Africa. METHODS: We applied the framework to 195 sub-Saharan African amphibians with both available bioclimatic envelope model projections for the mid-21st century and trait data. Excluded were 500 narrow-ranging species mainly from montane areas. For each of projected losses, increased fragmentation and gains of climate space, we selected potential response-mediating traits and examined the spatial overlap with vulnerability due to these traits. We examined the overlap for all species, and individually for groups of species with different combinations of threats and opportunities. RESULTS: In the Congo Basin and arid Southern Africa, projected losses for wide-ranging amphibians were compounded by sensitivity to climatic variation, and expected gains were precluded by poor dispersal ability. The spatial overlap between exposure and vulnerability was more pronounced for species projected to have their climate space contracting in situ or shifting to distant geographical areas. Our results exclude the potential exposure of narrow-ranging species to shrinking climates in the African tropical mountains. MAIN CONCLUSIONS: We illustrate the application of a framework combining spatial projections of climate change exposure with traits that are likely to mediate species' responses. Although the proposed framework carries several assumptions that require further scrutiny, its application adds a degree of realism to familiar assessments that consider all species to be equally affected by climate change-induced threats and opportunities.

3.
PLoS One ; 8(6): e65427, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23950785

RESUMO

Climate change will have far-reaching impacts on biodiversity, including increasing extinction rates. Current approaches to quantifying such impacts focus on measuring exposure to climatic change and largely ignore the biological differences between species that may significantly increase or reduce their vulnerability. To address this, we present a framework for assessing three dimensions of climate change vulnerability, namely sensitivity, exposure and adaptive capacity; this draws on species' biological traits and their modeled exposure to projected climatic changes. In the largest such assessment to date, we applied this approach to each of the world's birds, amphibians and corals (16,857 species). The resulting assessments identify the species with greatest relative vulnerability to climate change and the geographic areas in which they are concentrated, including the Amazon basin for amphibians and birds, and the central Indo-west Pacific (Coral Triangle) for corals. We found that high concentration areas for species with traits conferring highest sensitivity and lowest adaptive capacity differ from those of highly exposed species, and we identify areas where exposure-based assessments alone may over or under-estimate climate change impacts. We found that 608-851 bird (6-9%), 670-933 amphibian (11-15%), and 47-73 coral species (6-9%) are both highly climate change vulnerable and already threatened with extinction on the IUCN Red List. The remaining highly climate change vulnerable species represent new priorities for conservation. Fewer species are highly climate change vulnerable under lower IPCC SRES emissions scenarios, indicating that reducing greenhouse emissions will reduce climate change driven extinctions. Our study answers the growing call for a more biologically and ecologically inclusive approach to assessing climate change vulnerability. By facilitating independent assessment of the three dimensions of climate change vulnerability, our approach can be used to devise species and area-specific conservation interventions and indices. The priorities we identify will strengthen global strategies to mitigate climate change impacts.


Assuntos
Anfíbios/fisiologia , Antozoários/fisiologia , Aves/fisiologia , Mudança Climática , Aclimatação , Animais , Biodiversidade , Conservação dos Recursos Naturais/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...