Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Med Chem ; 3(4): 317-26, 2007 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-17627568

RESUMO

Malaria, the most important of the human parasitic diseases, causes about 500 million infections worldwide and over 1 million deaths every year. The search for novel drug candidates against specific parasitic targets is an important goal for antimalarial drug discovery. Recently the antimalarial activity of chalcones has generated great interest. These compounds are small non-chiral molecules with relative high lipophilicity (clogP approximately 5-7), have molecular weights in the range of 300 to 600 g/mol, and possess in vivo efficacy against both P. berghei and P. yeolii. Preliminary data on our on-going chalcone synthesis project indicate that these compounds are active in vitro against P. falciparum, but are rapidly metabolized in liver microsome assays. Structurally-related compounds not including the enone linker are found to be much more metabolically stable and yet have comparable in vitro efficacy. In this study, we have utilized the efficacy data from an in-house on-going chalcone project to develop a 3D pharmacophore for antimalarial activity and used it to conduct virtual screening (in silico search) of a chemical library which resulted in identification of several potent chalcone-like antimalarials. The pharmacophore is found to contain an aromatic and an aliphatic hydrophobic site, one hydrogen bond donor site, and a ring aromatic feature distributed over a 3D space. The identified compounds were not only found to be potent in vitro against several drug resistant and susceptible strains of P. falciparum and have better metabolic stability, but included one with good in vivo efficacy in a mouse model of malaria.


Assuntos
Antimaláricos/química , Antimaláricos/farmacologia , Chalconas/química , Chalconas/farmacologia , Desenho de Fármacos , Imageamento Tridimensional , Modelos Moleculares , Animais , Simulação por Computador , Concentração Inibidora 50 , Estrutura Molecular , Plasmodium/efeitos dos fármacos , Relação Quantitativa Estrutura-Atividade , Relação Estrutura-Atividade
2.
Med Chem ; 3(2): 115-9, 2007 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-17348849

RESUMO

The antileishmanial and antimalarial activity of methoxy-substituted chalcones (1,3-diphenyl-2-propen-1-ones) is well established. The few analogs prepared to date where the 3-phenyl group is replaced by either a pyridine or naphthalene suggest these modifications are potency enhancing. To explore this hypothesis, sixteen 3-naphthalenyl-1-phenyl-2-prop-1-enones and ten 1-phenyl-3-pyridinyl-2-prop-1-enones were synthesized and their in vitro efficacies against Leishmania donovani and Plasmodium falciparum determined. One inhibitor with submicromolar efficacy against L. donovani was identified (IC50 = 0.95 microM), along with three other potent compounds (IC50 < 5 microM), all of which were 3-pyridin-2-yl derivatives. No inhibitors with submicromolar efficacy against P. falciparum were identified, though several potent compounds were found (IC50 < 5 microM). The cytotoxicity of the five most active L. donovani inhibitors was assessed. At best the IC50 against a primary kidney cell line was around two-fold higher than against L. donovani. Being more active than pentamidine, the 1-phenyl-3-pyridin-2-yl-2-propen-1-ones have potential for further development against leishmaniasis; however it will be essential in such a program to address not only efficacy but also their potential for toxicity.


Assuntos
Antimaláricos/síntese química , Antimaláricos/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/farmacologia , Chalconas/síntese química , Chalconas/farmacologia , Leishmania/efeitos dos fármacos , Naftalenos/síntese química , Naftalenos/farmacologia , Piridinas/síntese química , Piridinas/farmacologia , Animais , Chlorocebus aethiops , Indicadores e Reagentes , Leishmania donovani/efeitos dos fármacos , Plasmodium falciparum/efeitos dos fármacos , Relação Estrutura-Atividade , Células Vero
3.
Cancer Chemother Pharmacol ; 44(2): 131-7, 1999.
Artigo em Inglês | MEDLINE | ID: mdl-10412947

RESUMO

PURPOSE: Eleutherobin, a natural product, is an antimitotic agent that promotes the polymerization of stable microtubules. Although its mechanism of action is similar to that of Taxol, its structure is distinct. A structure-activity profile of synthetic eleutherobin derivatives that have modifications at C3, C8 and C15 was undertaken to define the structural requirements for microtubule stabilization and cross-resistance in Taxol-resistant cell lines. METHODS: The biological activity of five eleutherobin analogs was assessed using three techniques: (1) cytotoxicity and drug-resistance in three paired Taxol-sensitive and -resistant cell lines; (2) polymerization of microtubule protein in vitro in the absence of GTP and (3) induction of microtubule bundle formation in NIH3T3 cells. RESULTS: Eleutherobin had an IC50 value comparable to that of Taxol, whereas neoeleutherobin, which has a carbohydrate domain that is enantiomeric with that of the parent compound, was less cytotoxic and had 69% of the maximum microtubule polymerization ability of eleutherobin. Both of these compounds exhibited cross-resistance in MDRI-expressing cell lines. Removal or replacement of the C15 sugar moiety resulted in reduced microtubule polymerization and cytotoxicity compared to eleutherobin and loss of cross-resistance in the cell lines SKVLB and J7-T3-1.6, both of which express high levels of P-glycoprotein. By contrast, removal of the urocanic acid group at C8 resulted in virtually complete abrogation of biological activity. The compound lost its ability to polymerize microtubules, and its cytotoxicity was reduced by a minimum of 2000-fold in lung carcinoma A549 cells. CONCLUSIONS: Removal or modification of the sugar moiety alters the cytotoxic potency of eleutherobin and its pattern of cross-resistance in Taxol-resistant cells, although such compounds retain a small percentage of the microtubule-stabilizing activity of eleutherobin. The N(1)-methylurocanic acid moiety of eleutherobin, or perhaps some other substituent at the C8 position, is essential for Taxol-like activity. These findings will be important for the future design and the synthesis of new and more potent eleutherobin derivatives.


Assuntos
Alcaloides/farmacologia , Antineoplásicos/farmacologia , Diterpenos , Paclitaxel/farmacologia , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/análise , Cálcio/farmacologia , Resistencia a Medicamentos Antineoplásicos , Humanos , Microtúbulos/efeitos dos fármacos , Relação Estrutura-Atividade , Tubulina (Proteína)/metabolismo , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...