Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Bio Mater ; 7(6): 3701-3713, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38748449

RESUMO

Metal-organic complexes have shown astounding bioactive properties; however, they are rarely explored as biomaterials. Recent studies showed that carboxymethyl-chitosan (CMC) genipin-conjugated zinc biomimetic scaffolds have unique bioselective properties. The biomaterial was reported to be mammalian cell-friendly; at the same time, it was found to discourage microbial biofilm formation on its surface, which seemed to be a promising solution to addressing the problem of trauma-associated biofilm formation and development of antimicrobial resistance. However, the mechanically frail characteristics and zinc overload raise concerns and limit the potential of the said biomaterials. Hence, the present work is focused on improving the strength of the earlier scaffold formulations, testing its in vivo efficacy and reaffirming its action against biofilm-forming microbe Staphylococcus aureus. Scaling up of CMC proportion increased rigidity, and 8% CMC was found to be the ideal concentration for robust scaffold fabrication. Freeze-dried CMC scaffolds with or without genipin (GP) cross-linking were conjugated with zinc using 2 M zinc acetate solution. Characterization results indicated that the CMC-Zn scaffolds, without genipin, showed mechanical properties close to bone fillers, resist in vitro enzymatic degradation until 4 weeks, are porous in nature, and have radiopacity close to mandibular bones. Upon implantation in a subcutaneous pocket of Wistar rats, the scaffolds showed tissue in-growth with simultaneous degradation without any signs of toxicity past 28 days. Neither were there any signs of toxicity in any of the vital organs. Considering many superior properties among the other formulations, the CMC-Zn scaffolds were furthered for biofilm studies. CMC-Zn showed negligible S. aureus biofilm formation on its surface as revealed by an alamar blue-based study. RT-PCR analysis revealed that CMC-Zn downregulated the expression of pro-biofilm effector genes such as icaC and clfB. A protein docking study predicted the inhibitory mechanism of CMC-Zn. Although it binds strongly when alone, at high density, it may cause inactivation of the transmembrane upstream activators of the said genes, thereby preventing their dimerization and subsequent inactivation of the effector genes. In conclusion, zinc-conjugated carboxymethyl-chitosan scaffolds are mechanically robust, porous, yet biodegradable, harmless to the host in the long term, they are radiopaque and prevent biofilm gene expression in notorious microbes; hence, they could be a suitable candidate for bone filler applications.


Assuntos
Materiais Biocompatíveis , Biofilmes , Teste de Materiais , Staphylococcus aureus , Zinco , Biofilmes/efeitos dos fármacos , Zinco/química , Zinco/farmacologia , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/fisiologia , Animais , Porosidade , Ratos , Antibacterianos/farmacologia , Antibacterianos/química , Antibacterianos/síntese química , Tamanho da Partícula , Quitosana/química , Quitosana/farmacologia , Testes de Sensibilidade Microbiana , Alicerces Teciduais/química
2.
Int J Biol Macromol ; 265(Pt 1): 130767, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38471601

RESUMO

The role of anionic counterions of divalent metal salts in alginate gelation and hydrogel properties has been thoroughly investigated. Three anions were selected from the Hofmeister series, namely sulphate, acetate and chloride, paired in all permutations and combinations with divalent metal cations like calcium, zinc and copper. Spectroscopic analysis revealed the presence of anions and their interaction with the respective metal cations in the hydrogel. The data showed that the gelation time and other hydrogel properties were largely controlled by cations. However, subtle yet significant variations in viscoelasticity, water uptake, drug release and cytocompatibility properties were anion dependent in each cationic group. Computational modelling based study showed that metal-anion-alginate configurations were energetically more stable than the metal-alginate models. The in vitro and in silico studies concluded that acetate anions preceded chlorides in the drug release, swelling and cytocompatibility fronts, followed by sulphate anions in each cationic group. Overall, the data confirmed that anions are an integral part of the metal-alginate complex. Furthermore, anions offer a novel option to further fine-tune the properties of alginate hydrogels for myriads of applications. In addition, full exploration of this novel avenue would enhance the usability of alginate polymers in the pharmaceutical, environmental, biomedical and food industries.


Assuntos
Hidrogéis , Sais , Hidrogéis/química , Alginatos/química , Cálcio/química , Cátions , Cloretos , Água , Sulfatos , Acetatos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...