Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cereb Cortex ; 27(9): 4662-4675, 2017 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-28922860

RESUMO

The axon initial segment (AIS) is essential for action potential generation. Recently, the AIS was identified as a site of neuronal plasticity. A subpopulation of AIS in cortical principal neurons contains stacks of endoplasmic reticulum (ER) forming the cisternal organelle (CO). The function of this organelle is poorly understood, but roles in local Ca2+-trafficking and AIS plasticity are discussed. To investigate whether the presence and/or the size of COs are linked to the development and maturation of AIS of cortical neurons, we analyzed the relationship between COs and the AIS during visual cortex development under control and visual deprivation conditions. In wildtype mice, immunolabeling for synaptopodin, ankyrin-G, and ßIV-spectrin were employed to label COs and the AIS, respectively. Dark rearing resulted in an increase in synaptopodin cluster sizes, suggesting a homeostatic function of the CO in this cellular compartment. In line with this observation, synaptopodin-deficient mice lacking the CO showed AIS shortening in the dark. Collectively, these data demonstrate that the CO is an essential part of the AIS machinery required for AIS plasticity during a critical developmental period of the visual cortex.


Assuntos
Segmento Inicial do Axônio/metabolismo , Axônios/metabolismo , Proteínas dos Microfilamentos/metabolismo , Plasticidade Neuronal/fisiologia , Córtex Visual/crescimento & desenvolvimento , Potenciais de Ação/fisiologia , Animais , Retículo Endoplasmático/metabolismo , Camundongos Endogâmicos C57BL , Neurogênese/fisiologia , Córtex Visual/metabolismo
2.
Front Neuroanat ; 8: 11, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24653680

RESUMO

Cortical networks are shaped by sensory experience and are most susceptible to modifications during critical periods characterized by enhanced plasticity at the structural and functional level. A system particularly well-studied in this context is the mammalian visual system. Plasticity has been documented for the somatodendritic compartment of neurons in detail. A neuronal microdomain not yet studied in this context is the axon initial segment (AIS) located at the proximal axon segment. It is a specific electrogenic axonal domain and the site of action potential (AP) generation. Recent studies showed that structure and function of the AIS can be dynamically regulated. Here we hypothesize that the AIS shows a dynamic regulation during maturation of the visual cortex. We therefore analyzed AIS length development from embryonic day (E) 12.5 to adulthood in mice. A tri-phasic time course of AIS length remodeling during development was observed. AIS first appeared at E14.5 and increased in length throughout the postnatal period to a peak between postnatal day (P) 10 to P15 (eyes open P13-14). Then, AIS length was reduced significantly around the beginning of the critical period for ocular dominance plasticity (CP, P21). Shortest AIS were observed at the peak of the CP (P28), followed by a moderate elongation toward the end of the CP (P35). To test if the dynamic maturation of the AIS is influenced by eye opening (onset of activity), animals were deprived of visual input before and during the CP. Deprivation for 1 week prior to eye opening did not affect AIS length development. However, deprivation from P0 to 28 and P14 to 28 resulted in AIS length distribution similar to the peak at P15. In other words, deprivation from birth prevents the transient shortening of the AIS and maintains an immature AIS length. These results are the first to suggest a dynamic maturation of the AIS in cortical neurons and point to novel mechanisms in the development of neuronal excitability.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...