Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Micromachines (Basel) ; 13(9)2022 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-36144003

RESUMO

The necessity of vehicle fault detection and diagnosis (VFDD) is one of the main goals and demands of the Internet of Vehicles (IoV) in autonomous applications. This paper integrates various machine learning algorithms, which are applied to the failure prediction and warning of various types of vehicles, such as the vehicle transmission system, abnormal engine operation, and tire condition prediction. This paper first discusses the three main AI algorithms, such as supervised learning, unsupervised learning, and reinforcement learning, and compares the advantages and disadvantages of each algorithm in the application of system prediction. In the second part, we summarize which artificial intelligence algorithm architectures are suitable for each system failure condition. According to the fault status of different vehicles, it is necessary to carry out the evaluation of the digital filtering process. At the same time, it is necessary to preconstruct its model analysis and adjust the parameter attributes, types, and number of samples of various vehicle prediction models according to the analysis results, followed by optimization to obtain various vehicle models. Finally, through a cross-comparison and sorting, the artificial intelligence failure prediction models can be obtained, which can correspond to the failure status of a certain car model and a certain system, thereby realizing a most appropriate AI model for a specific application.

2.
Sensors (Basel) ; 22(18)2022 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-36146421

RESUMO

Vehicle fault detection and diagnosis (VFDD) along with predictive maintenance (PdM) are indispensable for early diagnosis in order to prevent severe accidents due to mechanical malfunction in urban environments. This paper proposes an early voiceprint driving fault identification system using machine learning algorithms for classification. Previous studies have examined driving fault identification, but less attention has focused on using voiceprint features to locate corresponding faults. This research uses 43 different common vehicle mechanical malfunction condition voiceprint signals to construct the dataset. These datasets were filtered by linear predictive coefficient (LPC) and wavelet transform(WT). After the original voiceprint fault sounds were filtered and obtained the main fault characteristics, the deep neural network (DNN), convolutional neural network (CNN), and long short-term memory (LSTM) architectures are used for identification. The experimental results show that the accuracy of the CNN algorithm is the best for the LPC dataset. In addition, for the wavelet dataset, DNN has the best performance in terms of identification performance and training time. After cross-comparison of experimental results, the wavelet algorithm combined with DNN can improve the identification accuracy by up to 16.57% compared with other deep learning algorithms and reduce the model training time by up to 21.5% compared with other algorithms. Realizing the cross-comparison of recognition results through various machine learning methods, it is possible for the vehicle to proactively remind the driver of the real-time potential hazard of vehicle machinery failure.


Assuntos
Condução de Veículo , Aprendizado Profundo , Algoritmos , Redes Neurais de Computação , Análise de Ondaletas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...