Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Physiol ; 14: 1268075, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37811497

RESUMO

A wide variety of studies have reported some form of non-chemical or non-aqueous communication between physically isolated organisms, eliciting changes in cellular proliferation, morphology, and/or metabolism. The sources and mechanisms of such signalling pathways are still unknown, but have been postulated to involve vibration, volatile transmission, or light through the phenomenon of ultraweak photon emission. Here, we report non-chemical communication between isolated mitochondria from MCF7 (cancer) and MCF10A (non-cancer) cell lines. We found that mitochondria in one cuvette stressed by an electron transport chain inhibitor, antimycin, alters the respiration of mitochondria in an adjacent, but chemically and physically separate cuvette, significantly decreasing the rate of oxygen consumption compared to a control (p = <0.0001 in MCF7 and MCF10A mitochondria). Moreover, the changes in O2-consumption were dependent on the origin of mitochondria (cancer vs. non-cancer) as well as the presence of "ambient" light. Our results support the existence of non-chemical signalling between isolated mitochondria. The experimental design suggests that the non-chemical communication is light-based, although further work is needed to fully elucidate its nature.

2.
Int J Mol Sci ; 24(17)2023 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-37685877

RESUMO

Before the late 1980s, ideas around how the lipophilic phytocannabinoids might be working involved membranes and bioenergetics as these disciplines were "in vogue". However, as interest in genetics and pharmacology grew, interest in mitochondria (and membranes) waned. The discovery of the cognate receptor for tetrahydrocannabinol (THC) led to the classification of the endocannabinoid system (ECS) and the conjecture that phytocannabinoids might be "working" through this system. However, the how and the "why" they might be beneficial, especially for compounds like CBD, remains unclear. Given the centrality of membranes and mitochondria in complex organisms, and their evolutionary heritage from the beginnings of life, revisiting phytocannabinoid action in this light could be enlightening. For example, life can be described as a self-organising and replicating far from equilibrium dissipating system, which is defined by the movement of charge across a membrane. Hence the building evidence, at least in animals, that THC and CBD modulate mitochondrial function could be highly informative. In this paper, we offer a unique perspective to the question, why and how do compounds like CBD potentially work as medicines in so many different conditions? The answer, we suggest, is that they can modulate membrane fluidity in a number of ways and thus dissipation and engender homeostasis, particularly under stress. To understand this, we need to embrace origins of life theories, the role of mitochondria in plants and explanations of disease and ageing from an adaptive thermodynamic perspective, as well as quantum mechanics.


Assuntos
Cannabis , Alucinógenos , Animais , Agonistas de Receptores de Canabinoides , Endocanabinoides , Mitocôndrias
3.
Cannabis Cannabinoid Res ; 8(5): 790-801, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-36125410

RESUMO

Introduction: There are few vocal learning animals that are suitable for laboratory study, and so songbirds have unique utility for evaluating drug effects on behavior learned during a critical period of development. We previously found that purified botanically-derived cannabidiol (CBD, ≥98%) mitigates effects of partial ablation of zebra finch HVC, a pre-vocal motor cortical region. Here we expand prior work to determine ability of the euphorigenic cannabis constituent, Δ9-tetrahydrocannabinol (THC) to modulate CBD efficacy. Evidence suggests relative abundance of phytocannabinoids within cannabis extracts is an important determinant of activity, with CBD:THC of particular significance. As CBD-enriched extracts have become increasingly available both by prescription and over the counter, differential efficacy associated with distinct phytocannabinoid combinations and relative CBD:THC amounts is of increasing concern. Methods and Results: To evaluate THC modulation of CBD efficacy in mitigating the effects of partial ablation of zebra finch HVC, we have tested 3 mg/kg of purified botanically derived CBD (≥98%) containing 0.02, 0.08, 1, 3 and 5% THC. Results demonstrate differential efficacy on phonology and syntax, consistent with complex, hormetic dose-responses. On phonology, CBD with the lowest THC content (3% CBD + 0.02% THC) improved recovery while that with the highest THC content (3% CBD+5% THC) slowed it. In terms of syntax, all THC concentrations improved recovery time with the higher 3 mg/kg+3% THC being distinctly effective in returning behavior to pre-injury levels, and the highest 3 mg/kg CBD+5% THC for reducing the acute magnitude of syntax disruption. Differential phonology and syntax effects likely involve distinct neural circuits that control vocal learning and production. Understanding these systems-level effects will inform mechanisms underlying both phytocannabinoid action, and learning-dependent vocal recovery. Conclusions: Overall, we have found that efficacy of purified botanically derived CBD (≥98%) to influence vocal recovery varies with THC content in complex ways. This adds to evidence of differential efficacy with phytocannabinoid combinations and ratios thereof and underscores the importance of careful control over cannabis preparations used therapeutically.


Assuntos
Canabidiol , Cannabis , Alucinógenos , Aves Canoras , Animais , Canabidiol/farmacologia , Dronabinol/farmacologia , Agonistas de Receptores de Canabinoides , Encéfalo
4.
Biomedicines ; 10(12)2022 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-36551869

RESUMO

Many people infected with the SARS-CoV-2 suffer long-term symptoms, such as "brain fog", fatigue and clotting problems. Explanations for "long COVID" include immune imbalance, incomplete viral clearance and potentially, mitochondrial dysfunction. As conditions with sub-optimal mitochondrial function are associated with initial severity of the disease, their prior health could be key in resistance to long COVID and recovery. The SARs virus redirects host metabolism towards replication; in response, the host can metabolically react to control the virus. Resolution is normally achieved after viral clearance as the initial stress activates a hormetic negative feedback mechanism. It is therefore possible that, in some individuals with prior sub-optimal mitochondrial function, the virus can "tip" the host into a chronic inflammatory cycle. This might explain the main symptoms, including platelet dysfunction. Long COVID could thus be described as a virally induced chronic and self-perpetuating metabolically imbalanced non-resolving state characterised by mitochondrial dysfunction, where reactive oxygen species continually drive inflammation and a shift towards glycolysis. This would suggest that a sufferer's metabolism needs to be "tipped" back using a stimulus, such as physical activity, calorie restriction, or chemical compounds that mimic these by enhancing mitochondrial function, perhaps in combination with inhibitors that quell the inflammatory response.

5.
Bioelectricity ; 4(4): 237-247, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36636557

RESUMO

The consensus on the origins of life is that it involved organization of prebiotic chemicals according to the underlying principles of thermodynamics to dissipate energy derived from photochemical and/or geochemical sources. Leading theories tend to be chemistry-centric, revolving around either metabolism or information-containing polymers first. However, experimental data also suggest that bioelectricity and quantum effects play an important role in biology, which might suggest that a further factor is required to explain how life began. Intriguingly, in the early part of 20th century, the concept of the "morphogenetic field" was proposed by Gurwitsch to explain how the shape of an organism was determined, while a role for quantum mechanics in biology was suggested by Bohr and Schrödinger, among others. This raises the question as to the potential of these phenomena, especially bioelectric fields, to have been involved in the origin of life. It points to the possibility that as bioelectricity is universally prevalent in biological systems today, it represents a more complex echo of an electromagnetic skeleton which helped shape life into being. It could be argued that as a flow of ions creates an electric field, this could have been pivotal in the formation of an energy dissipating structure, for instance, in deep sea thermal vents. Moreover, a field theory might also hint at the potential involvement of nontrivial quantum effects in life. Not only might this perspective help indicate the origins of morphogenetic fields, but also perhaps suggest where life may have started, and whether metabolism or information came first. It might also help to provide an insight into aging, cancer, consciousness, and, perhaps, how we might identify life beyond our planet. In short, when thinking about life, not only do we have to consider the accepted chemistry, but also the fields that must also shape it. In effect, to fully understand life, as well as the yin of accepted particle-based chemistry, there is a yang of field-based interaction and an ethereal skeleton.

6.
Immun Ageing ; 18(1): 40, 2021 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-34717676

RESUMO

We, and others, have suggested that as the SARS-CoV-2 virus may modulate mitochondrial function, good mitochondrial reserve and health could be key in determining disease severity when exposed to this virus, as the immune system itself is dependent on this organelle's function. With the recent publication of a paper showing that long COVID could be associated with the reactivation of the Epstein Barr Virus, which is well known to manipulate mitochondria, we suggest that this could represent a second mitochondrial "whammy" that might support the mitochondrial hypothesis underlying COVID-19 severity and potentially, the occurrence of longer-term symptoms. As mitochondrial function declines with age, this could be an important factor in why older populations are more susceptible. Key factors which ensure optimal mitochondrial health are generally those that ensure healthy ageing, such as a good lifestyle with plenty of physical activity. The ability of viruses to manipulate mitochondrial function is well described, and it is now also thought that for evolutionary reasons, they also manipulate the ageing process. Given that slowing the ageing process could well be linked to better economic outcomes, the link between mitochondrial health, economics, COVID-19 and other viruses, as well as lifestyle, needs to be considered.

7.
Front Nutr ; 8: 588466, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33937302

RESUMO

Acetate is one of the main short chain fatty acids produced in the colon when fermentable carbohydrates are digested. It has been shown to affect normal metabolism, modulating mitochondrial function, and fatty acid oxidation. Currently, there is no clear consensus regarding the effects of acetate on tumorigenesis and cancer metabolism. Here, we investigate the metabolic effects of acetate on colon cancer. HT29 and HCT116 colon cancer cell lines were treated with acetate and its effect on mitochondrial proliferation, reactive oxygen species, density, permeability transition pore, cellular bioenergetics, gene expression of acetyl-CoA synthetase 1 (ACSS1) and 2 (ACSS2), and lipid levels were investigated. Acetate was found to reduce proliferation of both cell lines under normoxia as well as reducing glycolysis; it was also found to increase both oxygen consumption and ROS levels. Cell death observed was independent of ACSS1/2 expression. Under hypoxic conditions, reduced proliferation was maintained in the HT29 cell line but no longer observed in the HCT116 cell line. ACSS2 expression together with cellular lipid levels was increased in both cell lines under hypoxia which may partly protect cells from the anti-proliferative effects of reversed Warburg effect caused by acetate. The findings from this study suggest that effect of acetate on proliferation is a consequence of its impact on mitochondrial metabolism and during normoxia is independent of ACCS1/2 expression.

8.
Front Mol Biosci ; 8: 630107, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34046425

RESUMO

The cannabinoid, cannabidiol (CBD), is part of the plant's natural defense system that when given to animals has many useful medicinal properties, including activity against cancer cells, modulation of the immune system, and efficacy in epilepsy. Although there is no consensus on its precise mode of action as it affects many cellular targets, CBD does appear to influence mitochondrial function. This would suggest that there is a cross-kingdom ability to modulate stress resistance systems that enhance homeostasis. As NAD(P)H autofluorescence can be used as both a metabolic sensor and mitochondrial imaging modality, we assessed the potential of this technique to study the in vitro effects of CBD using 2-photon excitation and fluorescence lifetime imaging microscopy (2P-FLIM) of NAD(P)H against more traditional markers of mitochondrial morphology and cellular stress in MCF7 breast cancer cells. 2P-FLIM analysis revealed that the addition of CBD induced a dose-dependent decrease in bound NAD(P)H, with 20 µM treatments significantly decreased the contribution of bound NAD(P)H by 14.6% relative to the control (p < 0.001). CBD also increased mitochondrial concentrations of reactive oxygen species (ROS) (160 ± 53 vs. 97.6 ± 4.8%, 20 µM CBD vs. control, respectively, p < 0.001) and Ca2+ (187 ± 78 vs. 105 ± 10%, 20 µM CBD vs. the control, respectively, p < 0.001); this was associated with a significantly decreased mitochondrial branch length and increased fission. These are all suggestive of mitochondrial stress. Our results support the use of NAD(P)H autofluorescence as an investigative tool and provide further evidence that CBD can modulate mitochondrial function and morphology in a dose-dependent manner, with clear evidence of it inducing oxidative stress at higher concentrations. This continues to support emerging data in the literature and may provide further insight into its overall mode of action, not only in cancer, but potentially its function in the plant and why it can act as a medicine.

9.
Immun Ageing ; 17(1): 33, 2020 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-33292333

RESUMO

Infection with SARs-COV-2 displays increasing fatality with age and underlying co-morbidity, in particular, with markers of the metabolic syndrome and diabetes, which seems to be associated with a "cytokine storm" and an altered immune response. This suggests that a key contributory factor could be immunosenescence that is both age-related and lifestyle-induced. As the immune system itself is heavily reliant on mitochondrial function, then maintaining a healthy mitochondrial system may play a key role in resisting the virus, both directly, and indirectly by ensuring a good vaccine response. Furthermore, as viruses in general, and quite possibly this new virus, have also evolved to modulate immunometabolism and thus mitochondrial function to ensure their replication, this could further stress cellular bioenergetics. Unlike most sedentary modern humans, one of the natural hosts for the virus, the bat, has to "exercise" regularly to find food, which continually provides a powerful adaptive stimulus to maintain functional muscle and mitochondria. In effect the bat is exposed to regular hormetic stimuli, which could provide clues on how to resist this virus. In this paper we review the data that might support the idea that mitochondrial health, induced by a healthy lifestyle, could be a key factor in resisting the virus, and for those people who are perhaps not in optimal health, treatments that could support mitochondrial function might be pivotal to their long-term recovery.

10.
JCI Insight ; 5(23)2020 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-33141759

RESUMO

Ongoing societal changes in views on the medical and recreational roles of cannabis increased the use of concentrated plant extracts with a Δ9-tetrahydrocannabinol (THC) content of more than 90%. Even though prenatal THC exposure is widely considered adverse for neuronal development, equivalent experimental data for young age cohorts are largely lacking. Here, we administered plant-derived THC (1 or 5 mg/kg) to mice daily during P5-P16 and P5-P35 and monitored its effects on hippocampal neuronal survival and specification by high-resolution imaging and iTRAQ proteomics, respectively. We found that THC indiscriminately affects pyramidal cells and both cannabinoid receptor 1+ (CB1R)+ and CB1R- interneurons by P16. THC particularly disrupted the expression of mitochondrial proteins (complexes I-IV), a change that had persisted even 4 months after the end of drug exposure. This was reflected by a THC-induced loss of membrane integrity occluding mitochondrial respiration and could be partially or completely rescued by pH stabilization, antioxidants, bypassed glycolysis, and targeting either mitochondrial soluble adenylyl cyclase or the mitochondrial voltage-dependent anion channel. Overall, THC exposure during infancy induces significant and long-lasting reorganization of neuronal circuits through mechanisms that, in large part, render cellular bioenergetics insufficient to sustain key developmental processes in otherwise healthy neurons.


Assuntos
Dronabinol/efeitos adversos , Neurogênese/efeitos dos fármacos , Animais , Animais Recém-Nascidos , Morte Celular/efeitos dos fármacos , Feminino , Hipocampo/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/efeitos dos fármacos
11.
Phytother Res ; 34(8): 1868-1888, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32166791

RESUMO

Medicine has utilised plant-based treatments for millennia, but precisely how they work is unclear. One approach is to use a thermodynamic viewpoint that life arose by dissipating geothermal and/or solar potential. Hence, the ability to dissipate energy to maintain homeostasis is a fundamental principle in all life, which can be viewed as an accretion system where layers of complexity have built upon core abiotic molecules. Many of these compounds are chromophoric and are now involved in multiple pathways. Plants have further evolved a plethora of chromophoric compounds that can not only act as sunscreens and redox modifiers, but also have now become integrated into a generalised stress adaptive system. This could be an extension of the dissipative process. In animals, many of these compounds are hormetic, modulating mitochondria and calcium signalling. They can also display anti-pathogen effects. They could therefore modulate bioenergetics across all life due to the conserved electron transport chain and proton gradient. In this review paper, we focus on well-described medicinal compounds, such as salicylic acid and cannabidiol and suggest, at least in animals, their activity reflects their evolved function in plants in relation to stress adaptation, which itself evolved to maintain dissipative homeostasis.


Assuntos
Produtos Biológicos/uso terapêutico , Plantas/química , Protetores Solares/química , Produtos Biológicos/farmacologia , Humanos , Protetores Solares/análise
12.
Artigo em Inglês | MEDLINE | ID: mdl-31552202

RESUMO

Membrane vesicles (MVs) released from bacteria participate in cell communication and host-pathogen interactions. Roles for MVs in antibiotic resistance are gaining increased attention and in this study we investigated if known anti-bacterial effects of cannabidiol (CBD), a phytocannabinoid from Cannabis sativa, could be in part attributed to effects on bacterial MV profile and MV release. We found that CBD is a strong inhibitor of MV release from Gram-negative bacteria (E. coli VCS257), while inhibitory effect on MV release from Gram-positive bacteria (S. aureus subsp. aureus Rosenbach) was negligible. When used in combination with selected antibiotics, CBD significantly increased the bactericidal action of several antibiotics in the Gram-negative bacteria. In addition, CBD increased antibiotic effects of kanamycin in the Gram-positive bacteria, without affecting MV release. CBD furthermore changed protein profiles of MVs released from E. coli after 1 h CBD treatment. Our findings indicate that CBD may pose as a putative adjuvant agent for tailored co-application with selected antibiotics, depending on bacterial species, to increase antibiotic activity, including via MV inhibition, and help reduce antibiotic resistance.


Assuntos
Antibacterianos/farmacologia , Canabidiol/farmacologia , Membrana Celular/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Vesículas Secretórias/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos , Sinergismo Farmacológico , Viabilidade Microbiana/efeitos dos fármacos
13.
Transl Oncol ; 12(3): 513-522, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30597288

RESUMO

Glioblastoma multiforme (GBM) is the most common and aggressive form of primary malignant brain tumor in adults, with poor prognosis. Extracellular vesicles (EVs) are key-mediators for cellular communication through transfer of proteins and genetic material. Cancers, such as GBM, use EV release for drug-efflux, pro-oncogenic signaling, invasion and immunosuppression; thus the modulation of EV release and cargo is of considerable clinical relevance. As EV-inhibitors have been shown to increase sensitivity of cancer cells to chemotherapy, and we recently showed that cannabidiol (CBD) is such an EV-modulator, we investigated whether CBD affects EV profile in GBM cells in the presence and absence of temozolomide (TMZ). Compared to controls, CBD-treated cells released EVs containing lower levels of pro-oncogenic miR21 and increased levels of anti-oncogenic miR126; these effects were greater than with TMZ alone. In addition, prohibitin (PHB), a multifunctional protein with mitochondrial protective properties and chemoresistant functions, was reduced in GBM cells following 1 h CBD treatment. This data suggests that CBD may, via modulation of EVs and PHB, act as an adjunct to enhance treatment efficacy in GBM, supporting evidence for efficacy of cannabinoids in GBM.

14.
Front Pharmacol ; 9: 889, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30150937

RESUMO

Exosomes and microvesicles (EMV) are lipid bilayer-enclosed structures, released by cells and involved in intercellular communication through transfer of proteins and genetic material. EMV release is also associated with various pathologies, including cancer, where increased EMV release is amongst other associated with chemo-resistance and active transfer of pro-oncogenic factors. Recent studies show that EMV-inhibiting agents can sensitize cancer cells to chemotherapeutic agents and reduce cancer growth in vivo. Cannabidiol (CBD), a phytocannabinoid derived from Cannabis sativa, has anti-inflammatory and anti-oxidant properties, and displays anti-proliferative activity. Here we report a novel role for CBD as a potent inhibitor of EMV release from three cancer cell lines: prostate cancer (PC3), hepatocellular carcinoma (HEPG2) and breast adenocarcinoma (MDA-MB-231). CBD significantly reduced exosome release in all three cancer cell lines, and also significantly, albeit more variably, inhibited microvesicle release. The EMV modulating effects of CBD were found to be dose dependent (1 and 5 µM) and cancer cell type specific. Moreover, we provide evidence that this may be associated with changes in mitochondrial function, including modulation of STAT3 and prohibitin expression, and that CBD can be used to sensitize cancer cells to chemotherapy. We suggest that the known anti-cancer effects of CBD may partly be due to the regulatory effects on EMV biogenesis, and thus CBD poses as a novel and safe modulator of EMV-mediated pathological events.

15.
Biochem Soc Trans ; 44(4): 1101-10, 2016 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-27528758

RESUMO

A sufficiently complex set of molecules, if subject to perturbation, will self-organize and show emergent behaviour. If such a system can take on information it will become subject to natural selection. This could explain how self-replicating molecules evolved into life and how intelligence arose. A pivotal step in this evolutionary process was of course the emergence of the eukaryote and the advent of the mitochondrion, which both enhanced energy production per cell and increased the ability to process, store and utilize information. Recent research suggest that from its inception life embraced quantum effects such as 'tunnelling' and 'coherence' while competition and stressful conditions provided a constant driver for natural selection. We believe that the biphasic adaptive response to stress described by hormesis-a process that captures information to enable adaptability, is central to this whole process. Critically, hormesis could improve mitochondrial quantum efficiency, improving the ATP/ROS ratio, whereas inflammation, which is tightly associated with the aging process, might do the opposite. This all suggests that to achieve optimal health and healthy aging, one has to sufficiently stress the system to ensure peak mitochondrial function, which itself could reflect selection of optimum efficiency at the quantum level.


Assuntos
Metabolismo Energético , Nível de Saúde , Longevidade , Mitocôndrias/metabolismo , Adaptação Fisiológica , Trifosfato de Adenosina/metabolismo , Envelhecimento , Animais , Evolução Biológica , Hormese , Humanos , Inflamação/metabolismo , Modelos Biológicos , Espécies Reativas de Oxigênio/metabolismo
16.
Trends Pharmacol Sci ; 36(12): 802-821, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26434643

RESUMO

Chronic diseases are due to deviations of fundamental physiological systems, with different pathologies being characterised by similar malfunctioning biological networks. The ensuing compensatory mechanisms may weaken the body's dynamic ability to respond to further insults and reduce the efficacy of conventional single target treatments. The multitarget, systemic, and prohomeostatic actions emerging for plant cannabinoids exemplify what might be needed for future medicines. Indeed, two combined cannabis extracts were approved as a single medicine (Sativex(®)), while pure cannabidiol, a multitarget cannabinoid, is emerging as a treatment for paediatric drug-resistant epilepsy. Using emerging cannabinoid medicines as an example, we revisit the concept of polypharmacology and describe a new empirical model, the 'therapeutic handshake', to predict efficacy/safety of compound combinations of either natural or synthetic origin.


Assuntos
Quimioterapia Combinada/métodos , Modelos Biológicos , Polifarmacologia , Animais , Quimioterapia Combinada/efeitos adversos , Humanos , Terapia de Alvo Molecular
17.
Nutr Metab (Lond) ; 11: 34, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25089149

RESUMO

Mankind is facing an unprecedented health challenge in the current pandemic of obesity and diabetes. We propose that this is the inevitable (and predictable) consequence of the evolution of intelligence, which itself could be an expression of life being an information system driven by entropy. Because of its ability to make life more adaptable and robust, intelligence evolved as an efficient adaptive response to the stresses arising from an ever-changing environment. These adaptive responses are encapsulated by the epiphenomena of "hormesis", a phenomenon we believe to be central to the evolution of intelligence and essential for the maintenance of optimal physiological function and health. Thus, as intelligence evolved, it would eventually reach a cognitive level with the ability to control its environment through technology and have the ability remove all stressors. In effect, it would act to remove the very hormetic factors that had driven its evolution. Mankind may have reached this point, creating an environmental utopia that has reduced the very stimuli necessary for optimal health and the evolution of intelligence - "the intelligence paradox". One of the hallmarks of this paradox is of course the rising incidence in obesity, diabetes and the metabolic syndrome. This leads to the conclusion that wherever life evolves, here on earth or in another part of the galaxy, the "intelligence paradox" would be the inevitable side-effect of the evolution of intelligence. ET may not need to just "phone home" but may also need to "phone the local gym". This suggests another possible reason to explain Fermi's paradox; Enrico Fermi, the famous physicist, suggested in the 1950s that if extra-terrestrial intelligence was so prevalent, which was a common belief at the time, then where was it? Our suggestion is that if advanced life has got going elsewhere in our galaxy, it can't afford to explore the galaxy because it has to pay its healthcare costs.

18.
PLoS One ; 9(3): e89566, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24622769

RESUMO

BACKGROUND: The "classic" endocannabinoid (eCB) system includes the cannabinoid receptors CB1 and CB2, the eCB ligands anandamide (AEA) and 2-arachidonoylglycerol (2-AG), and their metabolic enzymes. An emerging literature documents the "eCB deficiency syndrome" as an etiology in migraine, fibromyalgia, irritable bowel syndrome, psychological disorders, and other conditions. We performed a systematic review of clinical interventions that enhance the eCB system--ways to upregulate cannabinoid receptors, increase ligand synthesis, or inhibit ligand degradation. METHODOLOGY/PRINCIPAL FINDINGS: We searched PubMed for clinical trials, observational studies, and preclinical research. Data synthesis was qualitative. Exclusion criteria limited the results to 184 in vitro studies, 102 in vivo animal studies, and 36 human studies. Evidence indicates that several classes of pharmaceuticals upregulate the eCB system, including analgesics (acetaminophen, non-steroidal anti-inflammatory drugs, opioids, glucocorticoids), antidepressants, antipsychotics, anxiolytics, and anticonvulsants. Clinical interventions characterized as "complementary and alternative medicine" also upregulate the eCB system: massage and manipulation, acupuncture, dietary supplements, and herbal medicines. Lifestyle modification (diet, weight control, exercise, and the use of psychoactive substances--alcohol, tobacco, coffee, cannabis) also modulate the eCB system. CONCLUSIONS/SIGNIFICANCE: Few clinical trials have assessed interventions that upregulate the eCB system. Many preclinical studies point to other potential approaches; human trials are needed to explore these promising interventions.


Assuntos
Endocanabinoides/metabolismo , Regulação para Cima/efeitos dos fármacos , Animais , Humanos , Receptores de Canabinoides/metabolismo
19.
Springerplus ; 2(1): 236, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23750331

RESUMO

ABSTRACT: This Phase I study aimed to assess the potential drug-drug interactions (pharmacokinetic [PK] and safety profile) of Δ9-tetrahydrocannabinol (THC)/cannabidiol (CBD) oromucosal spray (Sativex (®), nabiximols) in combination with cytochrome P450 (CYP450) inducer (rifampicin) or inhibitors (ketoconazole or omeprazole). Thirty-six healthy male subjects were divided into three groups of 12, and then randomized to one of two treatment sequences per group. Subjects received four sprays of THC/CBD (10.8/10 mg) alongside single doses of the CYP3A and 2C19 inducer rifampicin (600 mg), CYP3A inhibitor ketoconazole (400 mg) or CYP2C19 inhibitor omeprazole (40 mg). Plasma samples were analyzed for CBD, THC and its metabolite 11-hydroxy-THC (11-OH-THC). A single dose of four sprays of THC/CBD spray (10.8/10 mg) following repeated doses of rifampicin (600 mg) reduced the Cmax and AUC of all analytes. Cmax reduced from 2.94 to 1.88 ng/mL (-36%), 1.03 to 0.50 ng/mL (-52%) and 3.38 to 0.45 ng/mL (-87%) for THC, CBD and 11-OH-THC, respectively compared to single dose administration of THC/CBD spray alone. Ketoconazole co-administration with THC/CBD spray had the opposite effect, increasing the Cmax of the respective analytes from 2.65 to 3.36 ng/mL (+27%), 0.66 to 1.25 ng/mL (+89%) and 3.59 to 10.92 ng/mL (+204%). No significant deviations in Cmax or AUC for any analyte were observed when THC/CBD spray was co-administered with omeprazole. THC/CBD spray was well tolerated by the study subjects both alone and in combination with rifampicin, ketoconazole and omeprazole. Evaluation of the PKs of THC/CBD spray alone and in combination with CYP450 inhibitors/inducers suggests that all analytes are substrates for the isoenzyme CYP3A4, but not CYP2C19. On the basis of our findings, there is likely to be little impact on other drugs metabolized by CYP enzymes on the PK parameters of THC/CBD spray, but potential effects should be taken into consideration when co-administering THC/CBD spray with compounds which share the CYP3A4 pathway such as rifampicin or ketoconazole. TRIALS REGISTRATION: NCT01323465.

20.
Philos Trans R Soc Lond B Biol Sci ; 367(1607): 3342-52, 2012 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-23108551

RESUMO

The endocannabinoid system (ECS) is a construct based on the discovery of receptors that are modulated by the plant compound tetrahydrocannabinol and the subsequent identification of a family of nascent ligands, the 'endocannabinoids'. The function of the ECS is thus defined by modulation of these receptors-in particular, by two of the best-described ligands (2-arachidonyl glycerol and anandamide), and by their metabolic pathways. Endocannabinoids are released by cell stress, and promote both cell survival and death according to concentration. The ECS appears to shift the immune system towards a type 2 response, while maintaining a positive energy balance and reducing anxiety. It may therefore be important in resolution of injury and inflammation. Data suggest that the ECS could potentially modulate mitochondrial function by several different pathways; this may help explain its actions in the central nervous system. Dose-related control of mitochondrial function could therefore provide an insight into its role in health and disease, and why it might have its own pathology, and possibly, new therapeutic directions.


Assuntos
Endocanabinoides/metabolismo , Mitocôndrias/metabolismo , Doenças Mitocondriais/metabolismo , Animais , Apoptose , Cálcio/metabolismo , Transporte de Elétrons , Endocanabinoides/farmacologia , Metabolismo Energético , Humanos , Inflamação/metabolismo , Inflamação/patologia , Mediadores da Inflamação/metabolismo , Mitocôndrias/efeitos dos fármacos , Doenças Mitocondriais/patologia , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase/metabolismo , Óxido Nítrico Sintase Tipo III/metabolismo , Receptor CB1 de Canabinoide/metabolismo , Serina-Treonina Quinases TOR/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...