Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Nanomaterials (Basel) ; 11(8)2021 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-34443952

RESUMO

Graphene-based point-of-care (PoC) and chemical sensors can be fabricated using photolithographic processes at wafer-scale. However, these approaches are known to leave polymer residues on the graphene surface, which are difficult to remove completely. In addition, graphene growth and transfer processes can introduce defects into the graphene layer. Both defects and resist contamination can affect the homogeneity of graphene-based PoC sensors, leading to inconsistent device performance and unreliable sensing. Sensor reliability is also affected by the harsh chemical environments used for chemical functionalisation of graphene PoC sensors, which can degrade parts of the sensor device. Therefore, a reliable, wafer-scale method of passivation, which isolates the graphene from the rest of the device, protecting the less robust device features from any aggressive chemicals, must be devised. This work covers the application of molecular vapour deposition technology to create a dielectric passivation film that protects graphene-based biosensing devices from harsh chemicals. We utilise a previously reported "healing effect" of Al2O3 on graphene to reduce photoresist residue from the graphene surface and reduce the prevalence of graphene defects to improve graphene device homogeneity. The improvement in device consistency allows for more reliable, homogeneous graphene devices, that can be fabricated at wafer-scale for sensing and biosensing applications.

2.
Nanomaterials (Basel) ; 11(4)2021 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-33810278

RESUMO

A chromium-containing metal-organic framework (MOF), MIL-101 (Chromium(III) benzene-1,4-dicarboxylate), was used to catalyze the one pot, three component synthesis of some 2,4,5-trisubstituted imidazoles under solvent-free conditions. The advantages of using this heterogeneous catalyst include short reaction time, high yields, easy and quick isolation of catalyst and products, low amount of catalyst needed, and that the addition of solvent, salt, and additives are not needed. This catalyst is highly efficient and can be recovered at least 5 times with a slight loss of efficiency. The structure of the metal-organic frameworks (MOF) was confirmed by X-ray diffraction (XRD) and field emission scanning electron microscopy (FESEM). Fourier transform infrared spectroscopy (FTIR) and proton nuclear magnetic resonance (HNMR) were performed to confirm some of the synthesized products. Experimental data indicated that the optimum amount of catalyst was 5 mg for benzil (1 mmol), 4-chlorobenzaldehyde (1 mmol), and ammonium acetate (2.5 mmol), and the synthetic route to the various imidazoles is performed in 10 min by 95% yield, an acceptable result rivalling those of other catalysts.

3.
Nanomaterials (Basel) ; 11(2)2021 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-33562051

RESUMO

Electrochemical biosensors using carbon-based electrodes are being widely developed for the detection of a range of different diseases. Since their sensitivity depends on the surface coverage of bioreceptor moieties, it necessarily depends on the surface coverage of amine precursors. Electrochemical techniques, using ferrocene carboxylic acid as a rapid and cheap assay, were used to assess the surface coverage of amino-phenyl groups attached to the carbon electrode. While the number of electrons transferred in the first step of diazotisation indicated a surface coverage of 8.02 ± 0.2 × l0-10 (mol/cm2), and those transferred in the second step, a reduction of nitrophenyl to amino-phenyl, indicated an amine surface coverage of 4-5 × l0-10 (mol/cm2), the number of electrons transferred during attachment of the amine coupling assay compound, ferrocene carboxylic acid, indicated a much lower available amine coverage of only 2.2 × l0-11 (mol/cm2). Furthermore, the available amine coverage was critically dependent upon the number of cyclic voltammetry cycles used in the reduction, and thus the procedures used in this step influenced the sensitivity of any subsequent sensor. Amine coupling of a carboxyl terminated anti-beta amyloid antibody specific to Aß(1-42) peptide, a potential marker for Alzheimer's disease, followed the same pattern of coverage as that observed with ferrocene carboxylic acid, and at optimum amine coverage, the sensitivity of the differential pulse voltammetry sensor was in the range 0-200 ng/mL with the slope of 5.07 µA/ng.mL-1 and R2 = 0.98.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...