Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Infect Immun ; 91(11): e0033223, 2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-37877711

RESUMO

Many AB toxins contain an enzymatic A moiety that is anchored to a cell-binding B moiety by a disulfide bridge. After receptor-mediated endocytosis, some AB toxins undergo retrograde transport to the endoplasmic reticulum (ER) where reduction of the disulfide bond occurs. The reduced A subunit then dissociates from the holotoxin and enters the cytosol to alter its cellular target. Intoxication requires A chain separation from the holotoxin, but, for many toxins, it is unclear if reduction alone is sufficient for toxin disassembly. Here, we examined the link between reduction and disassembly for several ER-translocating toxins. We found disassembly of the reduced Escherichia coli heat-labile enterotoxin (Ltx) required an interaction with one specific ER-localized oxidoreductase: protein disulfide isomerase (PDI). In contrast, the reduction and disassembly of ricin toxin (Rtx) and Shiga toxin 1 (Stx1) were coupled events that did not require PDI and could be triggered by reductant alone. PDI-deficient cells accordingly exhibited high resistance to Ltx with continued sensitivity to Rtx and Stx1. The distinct structural organization of each AB toxin thus appears to determine whether holotoxin disassembly occurs spontaneously upon disulfide reduction or requires the additional input of PDI.


Assuntos
Ricina , Ricina/toxicidade , Ricina/química , Ricina/metabolismo , Toxina Shiga I , Isomerases de Dissulfetos de Proteínas/metabolismo , Dissulfetos
2.
Sci Rep ; 12(1): 34, 2022 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-34997016

RESUMO

Cholera toxin (CT) and Escherichia coli heat-labile enterotoxin (LT) are structurally similar AB5-type protein toxins. They move from the cell surface to the endoplasmic reticulum where the A1 catalytic subunit is separated from its holotoxin by protein disulfide isomerase (PDI), thus allowing the dissociated A1 subunit to enter the cytosol for a toxic effect. Despite similar mechanisms of toxicity, CT is more potent than LT. The difference has been attributed to a more stable domain assembly for CT as compared to LT, but this explanation has not been directly tested and is arguable as toxin disassembly is an indispensable step in the cellular action of these toxins. We show here that PDI disassembles CT more efficiently than LT, which provides a possible explanation for the greater potency of the former toxin. Furthermore, direct examination of CT and LT domain assemblies found no difference in toxin stability. Using novel analytic geometry approaches, we provide a detailed characterization of the positioning of the A subunit with respect to the B pentamer and demonstrate significant differences in the interdomain architecture of CT and LT. Protein docking analysis further suggests that these global structural differences result in distinct modes of PDI-toxin interactions. Our results highlight previously overlooked structural differences between CT and LT that provide a new model for the PDI-assisted disassembly and differential potency of these toxins.


Assuntos
Toxina da Cólera/química , Toxina da Cólera/metabolismo , Enterotoxinas/química , Enterotoxinas/metabolismo , Glicosídeos/química , Glicosídeos/metabolismo , Isomerases de Dissulfetos de Proteínas/metabolismo , Triterpenos/química , Triterpenos/metabolismo , Domínio Catalítico , Toxina da Cólera/toxicidade , Enterotoxinas/toxicidade , Escherichia coli/genética , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Temperatura Alta , Simulação de Acoplamento Molecular , Isomerases de Dissulfetos de Proteínas/química , Estabilidade Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...