Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Pers Med ; 13(12)2023 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-38138869

RESUMO

Computed tomography (CT) offers detailed insights into the internal anatomy of patients, particularly for spinal vertebrae examination. However, CT scans are associated with higher radiation exposure and cost compared to conventional X-ray imaging. In this study, we applied a Generative Adversarial Network (GAN) framework to reconstruct 3D spinal vertebrae structures from synthetic biplanar X-ray images, specifically focusing on anterior and lateral views. The synthetic X-ray images were generated using the DRRGenerator module in 3D Slicer by incorporating segmentations of spinal vertebrae in CT scans for the region of interest. This approach leverages a novel feature fusion technique based on X2CT-GAN to combine information from both views and employs a combination of mean squared error (MSE) loss and adversarial loss to train the generator, resulting in high-quality synthetic 3D spinal vertebrae CTs. A total of n = 440 CT data were processed. We evaluated the performance of our model using multiple metrics, including mean absolute error (MAE) (for each slice of the 3D volume (MAE0) and for the entire 3D volume (MAE)), cosine similarity, peak signal-to-noise ratio (PSNR), 3D peak signal-to-noise ratio (PSNR-3D), and structural similarity index (SSIM). The average PSNR was 28.394 dB, PSNR-3D was 27.432, SSIM was 0.468, cosine similarity was 0.484, MAE0 was 0.034, and MAE was 85.359. The results demonstrated the effectiveness of this approach in reconstructing 3D spinal vertebrae structures from biplanar X-rays, although some limitations in accurately capturing the fine bone structures and maintaining the precise morphology of the vertebrae were present. This technique has the potential to enhance the diagnostic capabilities of low-cost X-ray machines while reducing radiation exposure and cost associated with CT scans, paving the way for future applications in spinal imaging and diagnosis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...