Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biologia (Bratisl) ; : 1-16, 2023 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-37363646

RESUMO

Regular intake of fucosylated oligosaccharides has been associated with several benefits for human health, particularly for new-borns. Since these biologically active molecules can be found naturally in human milk, research efforts have been focused on the alternative synthetic routes leading to their production. In particular, utilization of fucosidases to perform stereoselective transglycosylation reactions has been widely investigated. Other reasons that bring these enzymes to the spotlight are their role in viral infections and cancer proliferation. Since their involvement in the pathogenesis of these diseases have been widely described, fucosidases have become a target in newly developed therapies. Finally, activity disorders of biologically important fucosidases can lead to health problems such as fucosidosis. What is common for both mechanisms is the interaction between the enzyme and substrates in and around the active site. Therefore, this review will analyse different substrate structures that have been tested in terms of their interaction with fucosidases active sites, either in synthesis or inhibition reactions. The published results will be compared from this perspective.

2.
Appl Biochem Biotechnol ; 193(11): 3553-3569, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34312785

RESUMO

The effects of water activity (aw), pH, and temperature on transglycosylation activity of α-L-fucosidase from Thermotoga maritima in the synthesis of fucosylated oligosaccharides were evaluated using different water-organic cosolvent reaction systems. The optimum conditions of transglycosylation reaction were the pH range between 7 and 10 and temperature 90-95 °C. The addition of organic cosolvent decreased α-L-fucosidase transglycosylation activity in the following order: acetone > dimethyl sulfoxide (DMSO) > acetonitrile (0.51 > 0.42 > 0.18 mM/h). However, the presence of DMSO and acetone enhanced enzyme-catalyzed transglycosylation over hydrolysis as demonstrated by the obtained transglycosylation/hydrolysis rate (rT/H) values of 1.21 and 1.43, respectively. The lowest rT/H was calculated for acetonitrile (0.59), though all cosolvents tested improved the transglycosylation rate in comparison to a control assay (0.39). Overall, the study allowed the production of fucosylated oligosaccharides in water-organic cosolvent reaction media using α-L-fucosidase from T. maritima as biocatalyst.


Assuntos
Proteínas de Bactérias/química , Fucose/química , Oligossacarídeos/síntese química , Thermotoga maritima/enzimologia , alfa-L-Fucosidase/química , Solventes/química , Água/química
3.
Extremophiles ; 25(3): 311-317, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33938983

RESUMO

Fucosylated oligosaccharides present in human milk perform various biological functions that benefit infants' health. These compounds can be also obtained by enzymatic synthesis. In this work, the effect of the immobilization of α-L-fucosidase from Thermotoga maritima on the synthesis of fucosylated oligosaccharides was studied, using lactose and 4-nitrophenyl-α-L-fucopyranoside (pNP-Fuc) as acceptor and donor substrates, respectively, and Eupergit® CM as an immobilization support. The enzyme was immobilized with 90% efficiency at pH 8 and ionic strength of 1.5 M. Immobilization decreased enzyme affinity for the donor substrate as shown by a 1.5-times higher KM value and a 22-times decrease of the kcat/KM ratio in comparison to the unbound enzyme. In contrast, no effect was observed on the synthesis/hydrolysis ratio (rs/rh) when α-L-fucosidase was immobilized. Also, the effect of initial concentration of substrates was studied. An increase of the acceptor concentration improved the yields of fucosylated oligosaccharides regardless enzyme immobilization. The synthesis yields of 38.9 and 40.6% were obtained using Eupergit® CM-bound or unbound enzyme, respectively, and 3.5 mM pNP-Fuc and 146 mM lactose. In conclusion, α-L-fucosidase from Thermotoga maritima was efficiently immobilized on Eupergit® CM support without affecting the synthesis of fucosylated oligosaccharides.


Assuntos
Thermotoga maritima , alfa-L-Fucosidase , Fucose , Oligossacarídeos , Especificidade por Substrato , Thermotoga , Thermotoga maritima/metabolismo , alfa-L-Fucosidase/metabolismo
4.
Molecules ; 24(13)2019 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-31261855

RESUMO

Fucosyl-oligosaccharides are natural prebiotics that promote the growth of probiotics in human gut and stimulate the innate immune system. In this work, the release of α-lfucosidase by Lactobacillus rhamnosus GG, and the use of this enzyme for the synthesis of fucosyl-oligosaccharides were investigated. Since α-lfucosidase is a membrane-bound enzyme, its release from the cells was induced by addition of 4-nitrophenyl-α-l-fucopyranoside (pNP-Fuc). Enzyme activity associated with the cell was recovered at 78% of its total activity. Fucosyl-oligosaccharides where synthesized using α-l-fucosidase extract and pNP-Fuc as donor substrate, and D-lactose or D-lactulose as acceptor substrates, reaching a yield up to 25%. Fucosyllactose was obtained as a reaction product with D-lactose, and its composition was confirmed by mass spectrometry (MALDI-TOF MS). It is possible that the fucosyl-oligosaccharide synthesized in this study has biological functions similar to human milk oligosaccharides.


Assuntos
Lacticaseibacillus rhamnosus/enzimologia , Oligossacarídeos/biossíntese , alfa-L-Fucosidase/isolamento & purificação , Proteínas de Bactérias/isolamento & purificação , Proteínas de Bactérias/metabolismo , Parede Celular/enzimologia , Cromatografia Líquida de Alta Pressão , Glicosídeos/química , Humanos , Espectrometria de Massas , Oligossacarídeos/química , Prebióticos , Especificidade por Substrato , alfa-L-Fucosidase/metabolismo
5.
Appl Biochem Biotechnol ; 188(2): 369-380, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30467689

RESUMO

Glycosylhydrolases of various origins were used to produce fucose-containing disaccharides with prebiotic potential using different donor substrates and L-fucose as the acceptor substrate. Eight different disaccharides were synthesized as follows: three ß-D-galactosyl-L-fucosides with glycosidase CloneZyme Gly-001-02 using D-lactose as a donor substrate, two with a structure similar to prebiotics; one ß-D-galactosyl-L-fucose with ß-D-galactosidase from Aspergillus oryzae using D-lactose as a substrate donor; and four α-D-glucosyl-L-fucosides with α-D-glucosidase from Saccharomyces cerevisiae using D-maltose as a donor substrate. All disaccharides were purified and hydrolyzed. In all cases, an L-fucose moiety was present, and it was confirmed for ß-D-galactosyl-L-fucose by mass spectrometry. High concentrations of L-fucose as the acceptor substrate enhanced the synthesis of the oligosaccharides in all cases. The three enzymes were able to synthesize fucose-containing disaccharides when L-fucose was used as the acceptor substrate, and the highest yield was 20% using ß-D-galactosidase from Aspergillus oryzae.


Assuntos
Dissacarídeos/biossíntese , Fucose/metabolismo , Glicosídeo Hidrolases/metabolismo , Anti-Infecciosos/química , Anti-Infecciosos/metabolismo , Aspergillus oryzae/enzimologia , Biotecnologia , Dissacarídeos/química , Fucose/química , Proteínas Fúngicas/isolamento & purificação , Proteínas Fúngicas/metabolismo , Glicosídeo Hidrolases/isolamento & purificação , Glicosilação , Lactose/metabolismo , Prebióticos , Saccharomyces cerevisiae/enzimologia , Especificidade por Substrato , alfa-Glucosidases/isolamento & purificação , alfa-Glucosidases/metabolismo , beta-Galactosidase/isolamento & purificação , beta-Galactosidase/metabolismo
6.
Biotechnol Appl Biochem ; 66(2): 172-191, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30508310

RESUMO

Fucosylated oligosaccharides play important physiological roles in humans, including in the immune response, transduction of signals, early embryogenesis and development, growth regulation, apoptosis, pathogen adhesion, and so on. Efforts have been made to synthesize fucosylated oligosaccharides, as it is difficult to purify them from their natural sources, such as human milk, epithelial tissue, blood, and so on. Within the strategies for its in vitro synthesis, it is remarkable the employment of fucosidases, enzymes that normally cleave the fucosyl residue from the non-reducing end of fucosylated compounds, as these enzymes are also capable of synthesizing them by means of a transfucosylation reaction. This review summarizes the progress in the use of fucosidases for the synthesis of compounds that have potential for industrial and commercial applications.


Assuntos
Fucose/química , Oligossacarídeos/síntese química , alfa-L-Fucosidase/química , Oligossacarídeos/química
7.
Extremophiles ; 22(6): 889-894, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30088105

RESUMO

The influence of CaCl2 and NaCl in the hydrolytic activity and the influence of CaCl2 in the synthesis of fucosylated oligosaccharides using α-L-fucosidase from Thermotoga maritima were evaluated. The hydrolytic activity of α-L-fucosidase from Thermotoga maritima displayed a maximum increase of 67% in the presence of 0.8 M NaCl with water activity (aw) of 0.9672 and of 138% in the presence of 1.1 M CaCl2 (aw 0.9581). In addition, the hydrolytic activity was higher when using CaCl2 compared to NaCl at aw of 0.8956, 0.9581 and 0.9672. On the other hand, the effect of CaCl2 in the synthesis of fucosylated oligosaccharides using 4-nitrophenyl-fucose as donor substrate and lactose as acceptor was studied. In these reactions, the presence of 1.1 M CaCl2 favored the rate of transfucosylation, and improved the yield of synthesis duplicating and triplicating it with lactose concentrations of 58 and 146 mM, respectively. CaCl2 did not significatively affect hydrolysis rate in these reactions. The combination of the activating effect of CaCl2, the decrement in aw and lactose concentration had a synergistic effect favoring the synthesis of fucosylated oligosaccharides.


Assuntos
Proteínas de Bactérias/metabolismo , Oligossacarídeos/biossíntese , Thermotoga maritima/enzimologia , alfa-L-Fucosidase/metabolismo , Cálcio/metabolismo , Fucose/análogos & derivados , Sódio/metabolismo
8.
Appl Biochem Biotechnol ; 186(3): 681-691, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29717409

RESUMO

Fucosylated oligosaccharides, such as 2'-fucosyllactose in human milk, have important biological functions such as prebiotics and preventing infection. In this work, the effect of an acceptor substrate (lactose) and the donor substrate 4-nitrophenyl-α-L-fucopyranoside (pNP-Fuc) on the synthesis of a fucosylated trisaccharide was studied in a transglycosylation reaction using α-L-fucosidase from Thermotoga maritima. Conducting a matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS), it was demonstrated that synthesized oligosaccharide corresponded to a fucosylated trisaccharide, and high-performance liquid chromatography (HPLC) of the hydrolyzed compound confirmed it was fucosyllactose. As the concentration of the acceptor substrate increased, the concentration and synthesis rate of the fucosylated trisaccharide also increased, and the highest concentration obtained was 0.883 mM (25.2% yield) when using the higher initial lactose concentration (584 mM). Furthermore, the lower donor/acceptor ratio had the highest synthesis, so at the molar ratio of 0.001, a concentration of 0.286 mM was obtained (32.5% yield).


Assuntos
Fucose/biossíntese , Thermotoga maritima/enzimologia , Trissacarídeos/metabolismo , alfa-L-Fucosidase/metabolismo , Cromatografia Líquida de Alta Pressão , Fucose/metabolismo , Glicosilação , Lactose/metabolismo , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...