Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 14076, 2024 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-38890342

RESUMO

Biological invasions threaten global biodiversity, altering landscapes, ecosystems, and mutualistic relationships like pollination. Orchids are one of the most threatened plant families, yet the impact of invasive bees on their reproduction remains poorly understood. We conduct a global literature survey on the incidence of invasive honeybees (Apis mellifera) on orchid pollination, followed by a study case on Australian orchids. Our literature survey shows that Apis mellifera is the primary alien bee visiting orchids worldwide. However, in most cases, introduced honeybees do not deposit orchid pollen. We also test the extent to which introduced honeybees affect orchid pollination using Diuris brumalis and D. magnifica. Diuris brumalis shows higher fruit set and pollination in habitats with both native and invasive bees compared to habitats with only introduced bees. Male and female reproductive success in D. magnifica increases with native bee abundance, while conversely pollinator efficiency decreases with honeybee abundance and rises with habitat size. Our results suggest that introduced honeybees are likely involved in pollen removal but do not effectively deposit orchid pollen, acting as pollen wasters. However, Apis mellifera may still contribute to pollination of Diuris where native bees no longer exist. Given the global occurrence of introduced honeybees, we warn that certain orchids may suffer from pollen depletion by these invaders, especially in altered habitats with compromised pollination communities.


Assuntos
Espécies Introduzidas , Orchidaceae , Pólen , Polinização , Animais , Abelhas/fisiologia , Polinização/fisiologia , Orchidaceae/fisiologia , Pólen/fisiologia , Ecossistema , Masculino , Reprodução/fisiologia , Austrália , Feminino
2.
Ecol Evol ; 13(1): e9759, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36726874

RESUMO

Flowers have many traits to appeal to pollinators, including ultraviolet (UV) absorbing markings, which are well-known for attracting bees at close proximity (e.g., <1 m). While striking UV signals have been thought to attract pollinators also from far away, if these signals impact the plant pollinia removal over distance remains unknown. Here, we report the case of the Australian orchid Diuris brumalis, a nonrewarding species, pollinated by bees via mimicry of the rewarding pea plant Daviesia decurrens. When distant from the pea plant, Diuris was hypothesized to enhance pollinator attraction by exaggeratedly mimicking the floral ultraviolet (UV) reflecting patterns of its model. By experimentally modulating floral UV reflectance with a UV screening solution, we quantified the orchid pollinia removal at a variable distance from the model pea plants. We demonstrate that the deceptive orchid Diuris attracts bee pollinators by emphasizing the visual stimuli, which mimic the floral UV signaling of the rewarding model Daviesia. Moreover, the exaggerated UV reflectance of Diuris flowers impacted pollinators' visitation at an optimal distance from Da. decurrens, and the effect decreased when orchids were too close or too far away from the model. Our findings support the hypothesis that salient UV flower signaling plays a functional role in visual floral mimicry, likely exploiting perceptual gaps in bee neural coding, and mediates the plant pollinia removal at much greater spatial scales than previously expected. The ruse works most effectively at an optimal distance of several meters revealing the importance of salient visual stimuli when mimicry is imperfect.

3.
Biotechnol Biofuels Bioprod ; 15(1): 98, 2022 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-36123695

RESUMO

BACKGROUND: The demand for naturally derived products is continuously growing. Nutraceuticals such as pre- and post-biotics, antioxidants and vitamins are prominent examples in this scenario, but many of them are mainly produced by chemical synthesis. The global folate market is expected to register a CAGR of 5.3% from 2019 to 2024 and reach USD 1.02 billion by the end of 2024. Vitamin B9, commonly known as folate, is an essential micronutrient for humans. Acting as a cofactor in one-carbon transfer reactions, it is involved in many biochemical pathways, among which the synthesis of nucleotides and amino acids. In addition to plants, many microorganisms can naturally produce it, and this can pave the way for establishing production processes. In this work, we explored the use of Scheffersomyces stipitis for the production of natural vitamin B9 by microbial fermentation as a sustainable alternative to chemical synthesis. RESULTS: Glucose and xylose are the main sugars released during the pretreatment and hydrolysis processes of several residual lignocellulosic biomasses (such as corn stover, wheat straw or bagasse). We optimized the growth conditions in minimal medium formulated with these sugars and investigated the key role of oxygenation and nitrogen source on folate production. Vitamin B9 production was first assessed in shake flasks and then in bioreactor, obtaining a folate production up to 3.7 ± 0.07 mg/L, which to date is the highest found in literature when considering wild type microorganisms. Moreover, the production of folate was almost entirely shifted toward reduced vitamers, which are those metabolically active for humans. CONCLUSIONS: For the first time, the non-Saccharomyces yeast S. stipitis was used to produce folate. The results confirm its potential as a microbial cell factory for folate production, which can be also improved both by genetic engineering strategies and by fine-tuning the fermentation conditions and nutrient requirements.

4.
Nat Prod Res ; 36(8): 2140-2144, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33118389

RESUMO

This study is aimed at valorizing artichoke (Cynara cardunculus var. scolymus L.) by-products as source of inulin, a fiber showing relevant prebiotic properties, through the realization of a waste value chain. Starting from artichoke by-products, the inulin fraction was assessed both in terms of total amount and degree of polymerization as a function of the harvest season and storage conditions. These parameters have been found significant at influencing inulin yield of extraction. For the first time, artichoke wastes were proposed to be exploited taking into account the optimal conditions to preserve their high-added chemical value. Our data suggest that Italian farms could obtain from their wastes a total amount of 16 t/year of inulin with an average polymerization degree higher than 40 and would allow the development of a circular economy process within the artichoke supply chain, by exploiting its wastes representing 70% of the total artichoke biomass.


Assuntos
Cynara scolymus , Cynara , Scolymus , Cynara scolymus/química , Inulina/química , Polimerização , Prebióticos
5.
Front Nutr ; 8: 667812, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34277680

RESUMO

Corchorus olitorius L. is an African leafy vegetable of high nutritional interest. To assess its agricultural suitability to sustainable cultivation conditions and its potential benefits for human nutrition, its phytochemical content in response to conservation agriculture practices [i.e., no-tillage (NT) and cover crop maintenance] and low water regime were evaluated and compared with response under conventional agriculture management. Hydric stress and NT did not affect the content of antioxidant metabolites, compared to conventional agricultural practices. In both conditions, leaves were found to be a great source of phenolic compounds. The effect of these phenolic fractions was assessed on two colon cell phenotypes to evaluate putative nutraceutical properties. Polyphenol-enriched extracts (PEEs) displayed selective cytotoxic activities against tumor Caco-2 cells but not on the healthy CCD841 line. PEEs were able to trigger oxidative stress and to inhibit the activity of glutathione-independent antioxidant enzymes on Caco-2 cells. C. olitorius showed to be a promising crop for improving both agricultural sustainability and health benefits due to the great amount of antioxidant compounds in leaves, whose occurrence is not altered by stressful farming conditions. Given its high adaptability, the cultivation of this crop is therefore recommendable also in the Mediterranean Basin.

6.
Biology (Basel) ; 10(1)2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33401423

RESUMO

Combining no-till and cover crops (NT + CC) as an alternative to conventional tillage (CT) is generating interest to build-up farming systems' resilience while promoting climate change adaptation in agriculture. Our field study aimed to assess the impact of long-term NT + CC management and short-term water stress on soil microbial communities, enzymatic activities, and the distribution of C and N within soil aggregates. High-throughput sequencing (HTS) revealed the positive impact of NT + CC on microbial biodiversity, especially under water stress conditions, with the presence of important rhizobacteria (e.g., Bradyrhizobium spp.). An alteration index based on soil enzymes confirmed soil depletion under CT. C and N pools within aggregates showed an enrichment under NT + CC mostly due to C and N-rich large macroaggregates (LM), accounting for 44% and 33% of the total soil C and N. Within LM, C and N pools were associated to microaggregates within macroaggregates (mM), which are beneficial for long-term C and N stabilization in soils. Water stress had detrimental effects on aggregate formation and limited C and N inclusion within aggregates. The microbiological and physicochemical parameters correlation supported the hypothesis that long-term NT + CC is a promising alternative to CT, due to the contribution to soil C and N stabilization while enhancing the biodiversity and enzymes.

7.
Curr Opin Biotechnol ; 70: 36-41, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33232845

RESUMO

Omics tools offer the opportunity to characterize and trace traditional and industrial fermented foods. Bioinformatics, through machine learning, and other advanced statistical approaches, are able to disentangle fermentation processes and to predict the evolution and metabolic outcomes of a food microbial ecosystem. By assembling microbial artificial consortia, the biotechnological advances will also be able to enhance the nutritional value and organoleptics characteristics of fermented food, preserving, at the same time, the potential of autochthonous microbial consortia and metabolic pathways, which are difficult to reproduce. Preserving the traditional methods contributes to protecting the hidden value of local biodiversity, and exploits its potential in industrial processes with the final aim of guaranteeing food security and safety, even in developing countries.


Assuntos
Ecossistema , Alimentos Fermentados , Biotecnologia , Fermentação , Microbiologia de Alimentos , Internacionalidade
8.
Aging (Albany NY) ; 12(19): 19785-19808, 2020 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-33024055

RESUMO

Aging and age-related neurodegeneration are among the major challenges in modern medicine because of the progressive increase in the number of elderly in the world population. Nutrition, which has important long-term consequences for health, is an important way to prevent diseases and achieve healthy aging. The beneficial effects of Vigna unguiculata on metabolic disorders have been widely documented. Here, we show that an aqueous extract of V. unguiculata beans delays senescence both in Saccharomyces cerevisiae and Drosophila melanogaster, in a Snf1/AMPK-dependent manner. Consistently, an increased expression of FOXO, SIRT1, NOTCH and heme oxygenase (HO) genes, already known to be required for the longevity extension in D. melanogaster, is also shown. Preventing α-synuclein self-assembly is one of the most promising approaches for the treatment of Parkinson's disease (PD), for which aging is a risk factor. In vitro aggregation of α-synuclein, its toxicity and membrane localization in yeast and neuroblastoma cells are strongly decreased in the presence of bean extract. In a Caenorhabditis elegans model of PD, V. unguiculata extract substantially reduces the number of the age-dependent degeneration of the cephalic dopaminergic neurons. Our findings support the role of V. unguiculata beans as a functional food in age-related disorders.

9.
Food Funct ; 11(7): 5853-5865, 2020 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-32589172

RESUMO

Colorectal cancer (CRC) is one of the most common types of cancer, especially in Western countries, and its incidence rate is increasing every year. In this study, for the first time Vigna unguiculata L. Walp. (cowpea) water boiled seed extracts were found to reduce the viability of different colorectal cancer (CRC) cell lines, such as E705, DiFi and SW480 and the proliferation of Caco-2 line too, without affecting CCD841 healthy cell line. Furthermore, the extracts showed the ability to reduce the level of Epidermal Growth Factor Receptor (EGFR) phosphorylation in E705, DiFi and SW480 cell lines and to lower the EC50 of a CRC common drug, cetuximab, on E705 and DiFi lines from 161.7 ng mL-1 to 0.06 ng mL-1 and from 49.5 ng mL-1 to 0.2 ng mL-1 respectively. The extract was characterized in its protein and metabolite profiles by tandem mass spectrometry and 1H-NMR analyses. A Bowman-Birk protease inhibitor was identified within the protein fraction and was supposed to be the main active component. These findings confirm the importance of a legume-based diet to prevent the outbreak of many CRC and to reduce the amount of drug administered during a therapeutic cycle.


Assuntos
Antineoplásicos Fitogênicos/uso terapêutico , Neoplasias Colorretais/tratamento farmacológico , Fitoterapia , Extratos Vegetais/uso terapêutico , Inibidores de Proteases/uso terapêutico , Sementes/química , Vigna/química , Antineoplásicos Fitogênicos/farmacologia , Células CACO-2 , Linhagem Celular Tumoral , Sobrevivência Celular , Cetuximab , Neoplasias Colorretais/prevenção & controle , Receptores ErbB/metabolismo , Humanos , Fosforilação , Extratos Vegetais/farmacologia , Proteínas de Plantas/farmacologia , Proteínas de Plantas/uso terapêutico , Inibidores de Proteases/farmacologia
11.
PLoS One ; 14(11): e0224037, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31693676

RESUMO

The way pollinators gather resources may play a key role for buffering their population declines. Social pollinators like bumblebees could adjust their foraging after significant workforce reductions to keep provisions to the colony optimal, especially in terms of pollen diversity and quantity. To test what effects a workforce reduction causes on the foraging for pollen, commercially-acquired colonies of the bumblebee Bombus terrestris were allowed to forage in the field and they were experimentally manipulated by removing half the number of workers. For each bumblebee, the pollen pellets were taxonomically identified with DNA metabarcoding of the ITS2 region followed by a statistical filtering based on ROC curves to filter out underrepresented OTUs. Video cameras and network analyses were employed to investigate changes in foraging strategies and behaviour. After filtering out the false-positives, HTS metabarcoding yielded a high plant diversity in the pollen pellets; for plant identity and pollen quantity traits no differences emerged between samples from treated and from control colonies, suggesting that plant choice was influenced mainly by external factors such as the plant phenology. The colonies responded to the removal of 50% of their workers by increasing the foraging activity of the remaining workers, while only negligible changes were found in diet breadth and indices describing the structure of the pollen transport network. Therefore, a consistency in the bumblebees' feeding strategies emerges in the short term despite the lowered workforce.


Assuntos
Abelhas/fisiologia , Pólen , Polinização/fisiologia , Fenômenos Fisiológicos da Nutrição Animal , Animais , Biodiversidade , República Tcheca , Código de Barras de DNA Taxonômico , Comportamento Alimentar , Plantas/classificação , Plantas/genética , Pólen/genética , Dinâmica Populacional
12.
Food Res Int ; 115: 1-9, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30599919

RESUMO

It is estimated that about 7000 plant species and a large number of cultivars and varieties have been cultivated for consumption in human history. However, <0.5% of these currently provide the majority of human food energy needs worldwide (e.g., rice, wheat, maize, and potato). Global issues such as climate change, diffusion of pests, and resistance to agrochemical treatments are posing great concern about the sustainable cultivation of these major staples, especially in equatorial and tropical countries, such as Sub Saharan Africa. In addition, most of these regions contain malnutrition and micronutrient deficiencies, and the sum of such problems create serious implications at social, political, and economic levels. A possible solution relies on the exploitation of plant biodiversity and particularly on the so-called NUS (Neglected and Underutilized Species). These plants are traditionally grown in their centres of origin and continue to be maintained by sociocultural preferences, however they remain inadequately documented and neglected by formal research and conservation programs. Although they are important in terms of micronutrients and the ability to grow in harsh conditions, these species are falling into disuse due to agronomic, genetic, economic, and cultural reasons. To promote and spread their cultivation at the global scale, along with knowledge on their suitability for human nutrition, reliable identification systems are necessary to guarantee adequate authenticity along the entire supply chain and distribution network. A precise identification of the different species and their varieties is fundamental both to retrieve information on their origin and authenticate the raw materials (i.e., seeds, leaves and fruit) and related processed products that can be distributed at the local or global scale. DNA-based techniques can help achieve this mission. In particular, the DNA barcoding approach has gained a role of primary importance due to its universality and versatility. Here, we discuss the advantages in using DNA barcoding for the identification of some of the most representative NUS species, as well as their traceability and conservation of cultural practices around them.


Assuntos
Código de Barras de DNA Taxonômico , Valor Nutritivo , Plantas/química , Biodiversidade , Conservação dos Recursos Naturais , Abastecimento de Alimentos , Frutas/química , Micronutrientes/análise , Estado Nutricional , Folhas de Planta/química , Sementes/química
13.
Plants (Basel) ; 9(1)2019 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-31905903

RESUMO

Nowadays, agriculture is facing the great challenge of climate change which puts the productivity of the crops in peril due to unpredictable rain patterns and water shortages, especially in the developing world. Besides productivity, nutritional values of the yields of these crops may also be affected, especially under low mechanization and the low water availability conditions of the developing world. Conservation agriculture (CA) is a topic of emerging interest due to the provision of adequate yields and reduced environmental impact, such as greenhouse gas emissions, by being based on three main principles: minimum soil disturbance (reduced or no tillage), cover crop maintenance, and crop rotation. The aim of this study was to assess the impact of CA management on the growth performance and the nutritional profile of cowpea (Vigna unguiculata L. Walp), a pulse of African origin, commonly known as black eye bean under field conditions. A field experiment was designed to assess the effect of conventional tillage (CT) and no-tillage (NT) combined with the usage of a set of cover crops, coupled to normal and deficient water regimes. Cowpea was revealed to be able to grow and yield comparably at each level of the treatment tested, with a better ability to face water exhaustion under CA management. After a faster initial growth phase in CT plots, the level of adaptability of this legume to NT was such that growth performances improved significantly with respect to CT plots. The flowering rate was higher and earlier in CT conditions, while in NT it was slower but longer-lasting. The leafy photosynthetic rate and the nutritional profile of beans were slightly influenced by tillage management: only total starch content was negatively affected in NT and watered plots while proteins and aminoacids did not show any significant variation. Furthermore, significantly higher carbon and nitrogen concentration occurred in NT soils especially at the topmost (0-5 cm) soil horizon. These findings confirm the capability of CA to enrich soil superficial horizons and highlight that cowpea is a suitable crop to be grown under sustainable CA management. This practice could be pivotal to preserve soils and to save agronomical costs without losing a panel of nutrients that are important to the human diet. Due to its great protein and aminoacidic composition, V. unguiculata is a good candidate for further cultivation in regions of the word facing deficiencies in the intake of such nutrients, such as the Mediterranean basins and Sub-Saharan countries.

15.
Ann Bot ; 122(6): 1061-1073, 2018 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-30184161

RESUMO

Background and Aims: While there is increasing recognition of Batesian floral mimicry in plants, there are few confirmed cases where mimicry involves more than one model species. Here, we test for pollination by mimicry in Diuris (Orchidaceae), a genus hypothesized to attract pollinators via mimicry of a range of co-occurring pea plants (Faboideae). Methods: Observations of pollinator behaviour were made for Diuris brumalis using arrays of orchid flowers. An analysis of floral traits in the co-flowering community and spectral reflectance measurements were undertaken to test if Di. brumalis and the pea plants showed strong similarity and were likely to be perceived as the same by bees. Pollen removal and fruit-set were recorded at 18 sites over two years to test if fitness of Di. brumalis increased with the abundance of the model species. Key Results: Diuris brumalis shares the pollinator species Trichococolletes capillosus and T. leucogenys (Hymenoptera: Colletidae) with co-flowering Faboideae from the genus Daviesia. On Di. brumalis, Trichocolletes exhibited the same stereotyped food-foraging and mate-patrolling behaviour that they exhibit on Daviesia. Diuris and pea plants showed strong morphological similarity compared to the co-flowering plant community, while the spectral reflectance of Diuris was similar to that of Daviesia spp. Fruit-set and pollen removal of Di. brumalis was highest at sites with a greater number of Daviesia flowers. Conclusions: Diuris brumalis is pollinated by mimicry of co-occurring congeneric Faboideae species. Evidence for mimicry of multiple models, all of which share pollinator species, suggests that this may represent a guild mimicry system. Interestingly, Di. brumalis belongs to a complex of species with similar floral traits, suggesting that this represents a useful system for investigating speciation in lineages that employ mimicry of food plants.


Assuntos
Abelhas/fisiologia , Mimetismo Biológico , Fabaceae/fisiologia , Orchidaceae/fisiologia , Polinização , Animais , Comportamento Alimentar , Comportamento Sexual Animal , Austrália Ocidental
16.
Food Res Int ; 112: 129-135, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30131119

RESUMO

Coffee is the second traded food commodity in the world. Beyond roasted seeds, the most part of the original fruit -and in particular pulp- is discarded as waste, with severe environmental and economic consequences in many developing countries. Our research focused on developing an eco-friendly extraction protocol of phytocomplexes from coffee pulp and evaluating their bioactivity and beneficial effects to human health as food supplements. Antioxidant activity assays (Folin-Ciocalteu and DPPH assays) were adopted to select the most effective extraction technique and results show antioxidant activity of coffee pulp extracts. After analysis of cytotoxicity on human epithelial gastric cells, measurements of IL-8 release of treated or pre-treated cells were performed. Results showed that the use of soft technical equipment and sustainable solvents (i.e. maceration process, aqueous extraction) can extract phytocomplexes with antioxidant properties. Moreover, IL-8 measurements showed impairment of this chemokine release at concentrations that may be reached in vivo in the gastrointestinal tract, following consumption of reasonable amount of extract. Pre-treatments analysis demonstrated the ability of coffee pulp extracts to prevent IL-8 release by gastric epithelial cells. Chemical evaluation performed by liquid chromatography mass spectrometry showed that quinic acid derivatives are abundant in coffee pulp extract together with procyanidins derivatives: those compounds might be responsible for the high biological activity. This evidence supports future applications of coffee pulp extracts as food supplement with high added value, starting from a waste that can be valorized through simple yet efficient extraction methods.


Assuntos
Anti-Inflamatórios/farmacologia , Antioxidantes/farmacologia , Café/química , Suplementos Nutricionais , Manipulação de Alimentos/métodos , Mucosa Gástrica/efeitos dos fármacos , Mediadores da Inflamação/metabolismo , Interleucina-8/metabolismo , Extratos Vegetais/farmacologia , Sementes/química , Anti-Inflamatórios/isolamento & purificação , Anti-Inflamatórios/toxicidade , Antioxidantes/isolamento & purificação , Antioxidantes/toxicidade , Linhagem Celular , Mucosa Gástrica/imunologia , Mucosa Gástrica/metabolismo , Humanos , Extratos Vegetais/isolamento & purificação , Extratos Vegetais/toxicidade
17.
Sci Rep ; 8(1): 11128, 2018 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-30026468

RESUMO

A correction to this article has been published and is linked from the HTML and PDF versions of this paper. The error has been fixed in the paper.

18.
Front Microbiol ; 9: 946, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29867854

RESUMO

Recent studies have highlighted the role of the grapevine microbiome in addressing a wide panel of features, ranging from the signature of field origin to wine quality. Although the influence of cultivar and vineyard environmental conditions in shaping the grape microbiome have already been ascertained, several aspects related to this topic, deserve to be further investigated. In this study, we selected three international diffused grapevine cultivars (Cabernet Sauvignon, Syrah, and Sauvignon Blanc) at three germplasm collections characterized by different climatic conditions [Northern Italy (NI), Italian Alps (AI), and Northern Spain (NS)]. The soil and grape microbiome was characterized by 16s rRNA High Throughput Sequencing (HTS), and the obtained results showed that all grape samples shared some bacterial taxa, regardless of sampling locality (e.g., Bacillus, Methylobacterium, Sphingomonas, and other genera belonging to Alphaproteobacteria, Gammaproteobacteria, and Actinobacteria). However, some Operational Taxonomic Units (OTUs) could act as geographical signatures and in some cases as cultivar fingerprint. Concerning the origin of the grape microbiome, our study confirms that vineyard soil represents a primary reservoir for grape associated bacteria with almost 60% of genera shared between the soil and grape. At each locality, grapevine cultivars shared a core of bacterial genera belonging to the vineyard soil, as well as from other local biodiversity elements such as arthropods inhabiting or foraging in the vineyard. Finally, a machine learning analysis showed that it was possible to predict the geographical origin and cultivar of grape starting from its microbiome composition with a high accuracy (9 cases out of 12 tested samples). Overall, these findings open new perspectives for the development of more comprehensive and integrated research activities to test which environmental variables have an effective role in shaping the microbiome composition and dynamics of cultivated species over time and space.

19.
Sci Rep ; 7(1): 13799, 2017 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-29062114

RESUMO

ABSRACT: The most anthropized regions of the world are characterized by an impressive abundance of invasive plants, which alter local biodiversity and ecosystem services. An alternative strategy to manage these species could be based on the exploitation of their fruits in a framework of bioprospecting to obtain high-added value compounds or phytocomplexes that are useful for humans. Here we tested this hypothesis on three invasive plants (Lonicera japonica Thunb., Phytolacca americana L., and Prunus serotina Ehrh.) in the Po plain (northern Italy) which bear fruits that are highly consumed by frugivorous birds and therefore dispersed over large distances. Our biochemical analyses revealed that unripe fruit shows high antioxidant properties due to the presence of several classes of polyphenols, which have a high benchmark value on the market. Fruit collection for phytochemical extraction could really prevent seed dispersal mediated by frugivorous animals and produce economic gains to support local management actions.


Assuntos
Bioprospecção/métodos , Ecossistema , Frutas/fisiologia , Espécies Introduzidas , Plantas , Dispersão de Sementes , Animais , Aves
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...