Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Life (Basel) ; 13(9)2023 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-37763312

RESUMO

Transcutaneous electrical stimulation of the spinal cord is used to restore locomotion and body weight support in patients with severe motor disorders. We studied the effects of this non-invasive stimulation on postural control in healthy subjects. Stimulation at the L1-L2 vertebrae was performed to activate the extensor muscles of the lower limbs. Because postural regulation depends on the cognitive style, the effects of the stimulation were analyzed separately in field-dependent (FD) and field-independent (FI) participants. During the study, FD and FI participants (N = 16, 25 ± 5 years, all right dominant leg) stood on a force platform in a soundproof chamber with their eyes closed. Stimulation was applied in the midline between the L1 and L2 vertebrae or over the left or right dorsal roots of the spinal cord; under the control condition, there was no stimulation. Stimulation destabilized posture in healthy subjects, whereas patients with movement disorders usually showed an improvement in postural control. In the FD participants, left dorsal root and midline stimulation increased several postural parameters by up to 30%. Dorsal root stimulation on the side of the supporting leg reduced postural control, while stimulation on the side of the dominant leg did not. No significant changes were observed in the FI participants.

2.
Diagnostics (Basel) ; 13(1)2022 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-36611414

RESUMO

SARS-CoV-2 infection may cause such complications as post-COVID-19 syndrome, which includes chronic fatigue, myalgia, arthralgia, as well as a variety of neurological manifestations, e.g., neuropathy of small fibers, hearing and vestibular dysfunction, and cognitive impairment. This clinical case describes a 41-year-old patient suffering from post-COVID-19 syndrome and chronic fatigue syndrome. A detailed examination was performed, including an in-depth study of peripheral and central hearing and vestibular functions, as well as small nerve fibers length and density in the skin and cornea of the eye. Contrary to expectations, no peripheral nervous system dysfunction was detected, despite the presence of dizziness and gait instability in the patient. Hearing tests (gap detection test and dichotic test) showed central auditory processing disorders. The evaluated lesion in the processing of temporal and verbal auditory information can be a significant factor contributing to additional overload of the neural activity and leading to chronic fatigue when performing daily activities in patients with CFS and post-COVID-19 complications.

3.
J Acoust Soc Am ; 147(3): 1719, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32237809

RESUMO

The impact of maskers on the receiving beam of a bottlenose dolphin, Tursiops truncatus, was investigated using the auditory evoked potential (AEP) method. The test signal was a train of tone pips with a 64 kHz carrier frequency. The stimulus produced AEPs as a sequence of waves replicating the pip rate: the rate following response (RFR). The masker was band-limited noise, with a passband of 45 to 90 kHz and a level of 105 dB re 1 µPa. Masker azimuths were at 0°, ±30°, ±60°, and ±90° relative to the head midline. The receiving beam was evaluated in terms of the RFR threshold dependence on the signal azimuth. The masked thresholds were higher than the baseline thresholds, which appeared mostly as a shift rather than a deformation in the receiving beam. The largest threshold shift appeared when the masker source was located in the most sensitive direction (zero azimuth); at lateral masker source positions, the threshold shift decreased. When the masker source was not at the head midline, the masked thresholds were higher at signal positions ipsilateral to the masker source than at positions contralateral to the masker source. The largest asymmetry was observed at the 30° masker azimuth in conjunction with the ±30° and ±120° signal azimuths; the asymmetries were 5.6 and 8.1 dB, respectively. This masking asymmetry was lower than expected from the previously found interaural intensity difference, which may be explained by the conflict between the test signal and the masker when it appeared at a binaural level of the auditory system.


Assuntos
Golfinho Nariz-de-Garrafa , Estimulação Acústica , Animais , Limiar Auditivo , Ruído/efeitos adversos , Mascaramento Perceptivo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...