Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 20460, 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-37993479

RESUMO

There has been significant research focused on the development of stretchable materials that can provide a large area with minimal material usage for use in solar cells and displays. However, most materials exhibit perpendicular shrinkage when stretched, which is particularly problematic for polymer-based substrates commonly used in stretchable devices. To address this issue, biaxial strain-controlled substrates have been proposed as a solution to increase device efficiency and conserve material resources. In this study, we present the design and fabrication of a biaxial strain-controlled substrate with a re-entrant honeycomb structure and a negative Poisson's ratio. Using a precisely machined mold with a shape error of less than 0.15%, we successfully fabricated polydimethylsiloxane substrates with a 500 µm thick re-entrant honeycomb structure, resulting in a 19.1% reduction in perpendicular shrinkage. This improvement translates to a potential increase in device efficiency by 9.44% and an 8.60% reduction in material usage for substrate fabrication. We demonstrate that this design and manufacturing method can be applied to the fabrication of efficient stretchable devices, such as solar cells and displays.

2.
Opt Express ; 30(16): 29760-29771, 2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-36299143

RESUMO

The manufacturing process for an ultrawide flexible microwave absorbing meta-surface was developed and optimized experimentally. The developed replication process consists of four main steps to demonstrate double-square loop array meta-structures: (1) mechanical machining of a master mold, (2) soft mold replication and patterned film imprinting, (3) conductive ink blade filling, (4) lamination of a base flexible film to meta sheet. Based on experimental optimization of the individual steps, the manufacturing process for a large-area flexible meta-film was established successfully. The feasibility of a developed process has been demonstrated with a 200 mm × 500 mm fabricated meta-film with a focus on microwave absorbing uniformity in the X-band region.

3.
Sci Rep ; 12(1): 7555, 2022 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-35534505

RESUMO

In ultra-precision planing process, the analysis of the critical depth of cut (DOC) is required to reduce the edge blunt and micro burrs produced by size effect which decreases of the effective area for high luminance retroreflector. However, since the machining characteristics are different according to cutting tool shape, machining material, and cutting condition, determine of the critical DOC is difficult without a comparison of machined surfaces under various DOC measured by ultra-high resolution measuring instrument. In this study, the critical DOC was analyzed using cutting force and tool vibration signals. The specific cutting energy was calculated by cutting force and cross-sectional area to analyze the stress variation according to DOC. Also, acceleration signals were converted to frequency spectrum that analyze dominant vibrating direction of the cutting tool by variation of cutting characteristic. It was confirmed that the method of using tool vibration more effective and accurate than specific cutting energy through validation of the comparison between results from analyze of the vibration signals and direction measuring surfaces. The master mold with area of 250 mm2 was manufactured by applying analyzed critical DOC. In addition, the high luminance characteristic of a retroreflection film press formed by the master mold was confirmed.

4.
Cancers (Basel) ; 14(8)2022 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-35454800

RESUMO

Human colon carcinomas, including HCT116 cells, often exhibit high autophagic flux under nutrient deprivation or hypoxic conditions. Mitochondrial ROS (mROS) is known as a 'molecular switch' for regulating the autophagic pathway, which is critical for directing cancer cell survival or death. In early tumorigenesis, autophagy plays important roles in maintaining cellular homeostasis and contributes to tumor growth. However, the relationships between mROS and the autophagic capacities of HCT116 cells are poorly understood. Ubiquinol cytochrome c reductase binding protein (UQCRB) has been reported as a biomarker of colorectal cancer, but its role in tumor growth has not been clarified. Here, we showed that UQCRB is overexpressed in HCT116 cells compared to CCD18co cells, a normal colon fibroblast cell line. Pharmacological inhibition of UQCRB reduced mROS levels, autophagic flux, and the growth of HCT116 tumors in a xenograft mouse model. We further investigated mutant UQCRB-overexpressing cell lines to identify functional links in UQCRB-mROS-autophagy. Notably, an increasing level of mROS caused by UQCRB overexpression released Ca2+ by the activation of lysosomal transient receptor potential mucolipin 1 (TRPML1) channels. This activation induced transcription factor EB (TFEB) nuclear translocation and lysosome biogenesis, leading to autophagy flux. Collectively, our study showed that increasing levels of mROS caused by the overexpression of UQCRB in human colon carcinoma HCT116 cells could be linked to autophagy for cell survival.

5.
Adv Sci (Weinh) ; 8(10): 2004029, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-34026449

RESUMO

Biodegradable electronics are disposable green devices whose constituents decompose into harmless byproducts, leaving no residual waste and minimally invasive medical implants requiring no removal surgery. Stretchable and flexible form factors are essential in biointegrated electronic applications for conformal integration with soft and expandable skins, tissues, and organs. Here a fully biodegradable MgZnCa metallic glass (MG) film is proposed for intrinsically stretchable electrodes with a high yield limit exploiting the advantages of amorphous phases with no crystalline defects. The irregular dissolution behavior of this amorphous alloy regarding electrical conductivity and morphology is investigated in aqueous solutions with different ion species. The MgZnCa MG nanofilm shows high elastic strain (≈2.6% in the nano-tensile test) and offers enhanced stretchability (≈115% when combined with serpentine geometry). The fatigue resistance in repeatable stretching also improves owing to the wide range of the elastic strain limit. Electronic components including the capacitor, inductor, diode, and transistor using the MgZnCa MG electrode support its integrability to transient electronic devices. The biodegradable triboelectric nanogenerator of MgZnCa MG operates stably over 50 000 cycles and its fatigue resistant applications in mechanical energy harvesting are verified. In vitro cell toxicity and in vivo inflammation tests demonstrate the biocompatibility in biointegrated use.

6.
Nano Lett ; 20(9): 6706-6711, 2020 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-32794761

RESUMO

Failure of a material is an irreversible process since the material loses its original characteristics and properties. The catastrophic brittle failure under tensile stress of nanoporous gold (np-Au) with a bicontinuous open-cell structure makes impossible otherwise attractive applications. Here, we first demonstrate a self-healing process in tensile-fractured np-Au to overcome the limit of fragility via mechanically assisted cold-welding under ambient conditions. The self-healing ability of np-Au in terms of mechanical properties shows strength recovery up to 64.4% and fully recovered elastic modulus compared with initial tensile properties. Topological parameters obtained by three-dimensional reconstruction of self-healed np-Au clarify the strength, elastic modulus, and strain distribution. The self-healing process in np-Au is attributed to surface diffusion expedited by local compressive stress in the ultrasmall dimension of ligaments formed by ductile failures of individual ligaments.

7.
Nano Lett ; 16(4): 2497-502, 2016 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-26982460

RESUMO

High density of grain boundaries in solid materials generally leads to high strength because grain boundaries act as strong obstacles to dislocation activity. We find that the flexural strength of nanoporous gold of grain size 206 nm is 33.6% lower than that of grain size 238 µm. We prepared three gold-silver precursor alloys, well-annealed, prestrained, and high-energy ball-milled, from which nanoporous gold samples were obtained by the same free-corrosion dealloying process. Ligaments of the same size are formed regardless of precursor alloys, and microstructural aspects of precursor alloys such as crystallographic orientation and grain size is preserved in the dealloying process. While the nanoindentation hardness of three nanoporous golds is independent of microstructural variation, flexural strength of nanocrystalline nanoporous gold is significantly lower than that of nanoporous golds with much larger grain size. We investigate weakening mechanisms of grain boundaries in nanocrystalline nanoporous gold, leading to weakening of flexural strength.

8.
Nano Lett ; 16(1): 471-8, 2016 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-26670378

RESUMO

Mechanical robustness, electrical and chemical reliabilities of devices against large deformations such as bending and stretching have become the key metrics for rapidly emerging wearable electronics. Metallic glasses (MGs) have high elastic limit, electrical conductivity, and corrosion resistance, which can be promising for applications in wearable electronics. However, their applications in wearable electronics or transparent electrodes have not been extensively explored so far. Here, we demonstrate stretchable and transparent electrodes using CuZr MGs in the form of nanotrough networks. MG nanotroughs are prepared by electrospinning and cosputtering process, and they can be transferred to various desired substrates, including stretchable elastomeric substrates. The resulting MG nanotrough network is first utilized as a stretchable transparent electrode, presenting outstanding optoelectronic (sheet resistance of 3.8 Ω/sq at transmittance of 90%) and mechanical robustness (resistance change less than 30% up to a tensile strain of 70%) as well as excellent chemical stability against hot and humid environments (negligible degradation in performance for 240 h in 85% relative humidity and 85 °C). A stretchable and transparent heater based on the MG nanotrough network is also demonstrated with a wide operating temperature range (up to 180 °C) and excellent stretchability (up to 70% in the strain). The excellent mechanical robustness of these stretchable transparent electrode and heater is ascribed to the structural configuration (i.e., a nanotrough network) and inherent high elastic limit of MGs, as supported by experimental results and numerical analysis. We demonstrate their real-time operations on human skin as a wearable, transparent thermotherapy patch controlled wirelessly using a smartphone as well as a transparent defroster for an automobile side-view mirror, suggesting a promising strategy toward next-generation wearable electronics or automobile applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...