Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Neural Eng ; 21(3)2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38657615

RESUMO

Objective.Transfer learning has become an important issue in the brain-computer interface (BCI) field, and studies on subject-to-subject transfer within the same dataset have been performed. However, few studies have been performed on dataset-to-dataset transfer, including paradigm-to-paradigm transfer. In this study, we propose a signal alignment (SA) for P300 event-related potential (ERP) signals that is intuitive, simple, computationally less expensive, and can be used for cross-dataset transfer learning.Approach.We proposed a linear SA that uses the P300's latency, amplitude scale, and reverse factor to transform signals. For evaluation, four datasets were introduced (two from conventional P300 Speller BCIs, one from a P300 Speller with face stimuli, and the last from a standard auditory oddball paradigm).Results.Although the standard approach without SA had an average precision (AP) score of 25.5%, the approach demonstrated a 35.8% AP score, and we observed that the number of subjects showing improvement was 36.0% on average. Particularly, we confirmed that the Speller dataset with face stimuli was more comparable with other datasets.Significance.We proposed a simple and intuitive way to align ERP signals that uses the characteristics of ERP signals. The results demonstrated the feasibility of cross-dataset transfer learning even between datasets with different paradigms.


Assuntos
Interfaces Cérebro-Computador , Eletroencefalografia , Potenciais Evocados P300 , Potenciais Evocados P300/fisiologia , Humanos , Eletroencefalografia/métodos , Masculino , Adulto , Feminino , Adulto Jovem , Algoritmos
2.
Front Hum Neurosci ; 17: 1205419, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37266326

RESUMO

[This corrects the article DOI: 10.3389/fnhum.2023.1134869.].

3.
J Neuroeng Rehabil ; 20(1): 60, 2023 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-37143057

RESUMO

Brain-computer interface (BCI) has helped people by allowing them to control a computer or machine through brain activity without actual body movement. Despite this advantage, BCI cannot be used widely because some people cannot achieve controllable performance. To solve this problem, researchers have proposed stimulation methods to modulate relevant brain activity to improve BCI performance. However, multiple studies have reported mixed results following stimulation, and the comparative study of different stimulation modalities has been overlooked. Accordingly, this study was designed to compare vibrotactile stimulation and transcranial direct current stimulation's (tDCS) effects on brain activity modulation and motor imagery BCI performance among inefficient BCI users. We recruited 44 subjects and divided them into sham, vibrotactile stimulation, and tDCS groups, and low performers were selected from each stimulation group. We found that the latter's BCI performance in the vibrotactile stimulation group increased significantly by 9.13% (p < 0.01), and while the tDCS group subjects' performance increased by 5.13%, it was not significant. In contrast, sham group subjects showed no increased performance. In addition to BCI performance, pre-stimulus alpha band power and the phase locking values (PLVs) averaged over sensory motor areas showed significant increases in low performers following stimulation in the vibrotactile stimulation and tDCS groups, while sham stimulation group subjects and high performers showed no significant stimulation effects across all groups. Our findings suggest that stimulation effects may differ depending upon BCI efficiency, and inefficient BCI users have greater plasticity than efficient BCI users.


Assuntos
Interfaces Cérebro-Computador , Estimulação Transcraniana por Corrente Contínua , Humanos , Estimulação Transcraniana por Corrente Contínua/métodos , Imagens, Psicoterapia , Movimento/fisiologia , Eletroencefalografia/métodos
4.
Front Hum Neurosci ; 17: 1134869, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37063105

RESUMO

The demand for public datasets has increased as data-driven methodologies have been introduced in the field of brain-computer interfaces (BCIs). Indeed, many BCI datasets are available in various platforms or repositories on the web, and the studies that have employed these datasets appear to be increasing. Motor imagery is one of the significant control paradigms in the BCI field, and many datasets related to motor tasks are open to the public already. However, to the best of our knowledge, these studies have yet to investigate and evaluate the datasets, although data quality is essential for reliable results and the design of subject- or system-independent BCIs. In this study, we conducted a thorough investigation of motor imagery/execution EEG datasets recorded from healthy participants published over the past 13 years. The 25 datasets were collected from six repositories and subjected to a meta-analysis. In particular, we reviewed the specifications of the recording settings and experimental design, and evaluated the data quality measured by classification accuracy from standard algorithms such as Common Spatial Pattern (CSP) and Linear Discriminant Analysis (LDA) for comparison and compatibility across the datasets. As a result, we found that various stimulation types, such as text, figure, or arrow, were used to instruct subjects what to imagine and the length of each trial also differed, ranging from 2.5 to 29 s with a mean of 9.8 s. Typically, each trial consisted of multiple sections: pre-rest (2.38 s), imagination ready (1.64 s), imagination (4.26 s, ranging from 1 to 10 s), the post-rest (3.38 s). In a meta-analysis of the total of 861 sessions from all datasets, the mean classification accuracy of the two-class (left-hand vs. right-hand motor imagery) problem was 66.53%, and the population of the BCI poor performers, those who are unable to reach proficiency in using a BCI system, was 36.27% according to the estimated accuracy distribution. Further, we analyzed the CSP features and found that each dataset forms a cluster, and some datasets overlap in the feature space, indicating a greater similarity among them. Finally, we checked the minimal essential information (continuous signals, event type/latency, and channel information) that should be included in the datasets for convenient use, and found that only 71% of the datasets met those criteria. Our attempts to evaluate and compare the public datasets are timely, and these results will contribute to understanding the dataset's quality and recording settings as well as the use of using public datasets for future work on BCIs.

5.
Front Hum Neurosci ; 15: 647839, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34349630

RESUMO

Brain-computer interfaces can provide a new communication channel and control functions to people with restricted movements. Recent studies have indicated the effectiveness of brain-computer interface (BCI) applications. Various types of applications have been introduced so far in this field, but the number of those available to the public is still insufficient. Thus, there is a need to expand the usability and accessibility of BCI applications. In this study, we introduce a BCI application for users to experience a virtual world tour. This software was built on three open-source environments and is publicly available through the GitHub repository. For a usability test, 10 healthy subjects participated in an electroencephalography (EEG) experiment and evaluated the system through a questionnaire. As a result, all the participants successfully played the BCI application with 96.6% accuracy with 20 blinks from two sessions and gave opinions on its usability (e.g., controllability, completeness, comfort, and enjoyment) through the questionnaire. We believe that this open-source BCI world tour system can be used in both research and entertainment settings and hopefully contribute to open science in the BCI field.

6.
Neuroimage ; 240: 118403, 2021 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-34280525

RESUMO

Motor imagery modulates specific neural oscillations like actual movement does. Representatively, suppression of the alpha power (e.g., event-related desynchronization [ERD]) is the typical pattern of motor imagery in the motor cortex. However, in addition to this amplitude-based feature, the coupling across frequencies includes important information about the brain functions and the existence of such complex information has been reported in various invasive studies. Yet, the interaction across multiple frequencies during motor imagery processing is still unclear and has not been widely studied, particularly concerning the non-invasive signals. In this study, we provide empirical evidence of the comodulation between the phase of alpha rhythm and the amplitude of high gamma rhythm during the motor imagery process. We used electroencephalography (EEG) in our investigation during the imagination of left- or right-hand movement recorded from 52 healthy subjects, and quantified the ERD of alpha and phase-amplitude coupling (PAC) which is a relative change of modulation index to the base line period (before the cue). As a result, we found that the coupling between the phase of alpha (8-12 Hz) and the amplitude of high gamma (70-120 Hz) and this PAC decreases during motor imagery and then rebounds to the baseline like alpha ERD (r = 0.29 to 0.42). This correlation between PAC and ERD was particularly stronger in the ipsilateral area. In addition, trials that demonstrated higher alpha power during the ready period (before the cue) showed a larger ERD during motor imagery and similarly, trials with higher modulation index during the ready period yielded a greater decrease in PAC during imagery. In the classification analysis, we found that the effective phase frequency that showed better decoding accuracy in left and right-hand imagery, varied across subjects. Motivated by result, we proposed a weighted cross-frequency coupling (WCFC) method that extracts the maximal discriminative feature by combining band power and CFC. In the evaluation, WCFC with only two electrodes yielded a performance comparable to the conventional algorithm with 64 electrodes in classifying left and right-hand motor imagery. These results indicate that the phase-amplitude frequency plays an important role in motor imagery, and that optimizing this frequency ranges is crucial for extracting information features to decode the motor imagery types.


Assuntos
Ritmo alfa/fisiologia , Eletroencefalografia/métodos , Ritmo Gama/fisiologia , Imaginação/fisiologia , Córtex Motor/fisiologia , Movimento/fisiologia , Bases de Dados Factuais/estatística & dados numéricos , Análise Discriminante , Eletroencefalografia/estatística & dados numéricos , Humanos , Estimulação Luminosa/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...